Suppr超能文献

预测患者恶化:数字医院环境中的工具综述。

Predicting Patient Deterioration: A Review of Tools in the Digital Hospital Setting.

机构信息

The Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia.

Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.

出版信息

J Med Internet Res. 2021 Sep 30;23(9):e28209. doi: 10.2196/28209.

Abstract

BACKGROUND

Early warning tools identify patients at risk of deterioration in hospitals. Electronic medical records in hospitals offer real-time data and the opportunity to automate early warning tools and provide real-time, dynamic risk estimates.

OBJECTIVE

This review describes published studies on the development, validation, and implementation of tools for predicting patient deterioration in general wards in hospitals.

METHODS

An electronic database search of peer reviewed journal papers from 2008-2020 identified studies reporting the use of tools and algorithms for predicting patient deterioration, defined by unplanned transfer to the intensive care unit, cardiac arrest, or death. Studies conducted solely in intensive care units, emergency departments, or single diagnosis patient groups were excluded.

RESULTS

A total of 46 publications were eligible for inclusion. These publications were heterogeneous in design, setting, and outcome measures. Most studies were retrospective studies using cohort data to develop, validate, or statistically evaluate prediction tools. The tools consisted of early warning, screening, or scoring systems based on physiologic data, as well as more complex algorithms developed to better represent real-time data, deal with complexities of longitudinal data, and warn of deterioration risk earlier. Only a few studies detailed the results of the implementation of deterioration warning tools.

CONCLUSIONS

Despite relative progress in the development of algorithms to predict patient deterioration, the literature has not shown that the deployment or implementation of such algorithms is reproducibly associated with improvements in patient outcomes. Further work is needed to realize the potential of automated predictions and update dynamic risk estimates as part of an operational early warning system for inpatient deterioration.

摘要

背景

预警工具可识别医院中病情恶化的患者。医院中的电子病历提供实时数据,并为自动化预警工具以及提供实时、动态风险估计提供了机会。

目的

本综述描述了已发表的关于开发、验证和实施用于预测医院普通病房患者病情恶化的工具的研究。

方法

对 2008 年至 2020 年同行评审期刊论文的电子数据库进行检索,确定了报告使用工具和算法预测患者恶化的研究,患者恶化定义为非计划性转入重症监护病房、心脏骤停或死亡。仅在重症监护病房、急诊或单一诊断患者群体中进行的研究被排除在外。

结果

共有 46 篇出版物符合纳入标准。这些出版物在设计、设置和结局指标方面存在异质性。大多数研究为使用队列数据来开发、验证或统计评估预测工具的回顾性研究。这些工具包括基于生理数据的早期预警、筛选或评分系统,以及更复杂的算法,旨在更好地表示实时数据、处理纵向数据的复杂性,并更早地预警恶化风险。只有少数研究详细介绍了病情恶化预警工具实施的结果。

结论

尽管在开发预测患者恶化的算法方面取得了一定进展,但文献并未表明此类算法的部署或实施与患者结局的改善具有可重复性关联。需要进一步的工作来实现自动化预测的潜力,并将动态风险估计更新作为住院患者病情恶化的操作预警系统的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38ea/8517822/da805fd27036/jmir_v23i9e28209_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验