Urtasun Nicolás, Muñoz Sebastián Aníbal, Arán Martín, Bermúdez-Moretti Mariana
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento Química Biológica. Buenos Aires, Argentina - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina.
Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de La Provincia de Buenos Aires (UNNOBA), Junín, Buenos Aires, Argentina.
Microb Cell. 2025 Jun 12;12:132-140. doi: 10.15698/mic2025.06.851. eCollection 2025.
Nitrogen metabolism in is tightly regulated to optimize the utilization of available nitrogen sources. Uga3 is a known transcription factor involved in the gamma-aminobutyric acid (GABA) pathway; however, its broader role in nitrogen metabolism remains unclear. Here, we demonstrate that Uga3 influences arginine biosynthesis, linking its function beyond GABA utilization when cells grow with proline as the sole and poor nitrogen source. Using a combination of intracellular amino acid quantification, proteomics, and gene expression analysis, we show that the absence of Uga3 leads to a significant increase in intracellular arginine levels and the up-regulation of , a key gene in the arginine biosynthesis pathway. Proteomic analysis of ∆ cells reveals differential expression of multiple nitrogen metabolism-related proteins, suggesting a broader regulatory role for Uga3. Surprisingly, chromatin immunoprecipitation (ChIP) assays indicate that Uga3 does not directly bind the promoter, implying an indirect regulatory mechanism. These findings expand the known functions of Uga3, positioning it as a key player in the coordinated regulation of nitrogen metabolism. Given the impact of nitrogen availability on industrial fermentation processes, our results provide new insights into optimizing yeast performance under nitrogen-limited conditions.
中的氮代谢受到严格调控,以优化可用氮源的利用。Uga3是一种已知的参与γ-氨基丁酸(GABA)途径的转录因子;然而,其在氮代谢中的更广泛作用仍不清楚。在这里,我们证明,当细胞以脯氨酸作为唯一且较差的氮源生长时,Uga3会影响精氨酸的生物合成,将其功能扩展到GABA利用之外。通过结合细胞内氨基酸定量、蛋白质组学和基因表达分析,我们表明Uga3的缺失会导致细胞内精氨酸水平显著增加,以及精氨酸生物合成途径中的关键基因上调。对∆细胞的蛋白质组学分析揭示了多种氮代谢相关蛋白质的差异表达,表明Uga3具有更广泛的调节作用。令人惊讶的是,染色质免疫沉淀(ChIP)分析表明,Uga3不直接结合启动子,这意味着存在间接调节机制。这些发现扩展了Uga3的已知功能,使其成为氮代谢协调调节中的关键参与者。鉴于氮可用性对工业发酵过程的影响,我们的结果为在氮限制条件下优化酵母性能提供了新的见解。