Department of Psychiatry and Behavioral Sciences, Stanford Institute of Neuro-Innovation and Translational Neuroscience, Stanford University School of Medicine, Stanford CA, USA.
Front Mol Neurosci. 2012 Feb 15;5:16. doi: 10.3389/fnmol.2012.00016. eCollection 2012.
All-trans retinoic acid (RA) plays important roles in brain development through regulating gene transcription. Recently, a novel post-developmental role of RA in mature brain was proposed. Specifically, RA rapidly enhanced excitatory synaptic transmission independent of transcriptional regulation. RA synthesis was induced when excitatory synaptic transmission was chronically blocked, and RA then activated dendritic protein synthesis and synaptic insertion of homomeric GluA1 AMPA receptors, thereby compensating for the loss of neuronal activity in a homeostatic fashion. This action of RA was suggested to be mediated by its canonical receptor RARα but no genetic evidence was available. Thus, we here tested the fundamental requirement of RARα in homeostatic plasticity using conditional RARα knockout (KO) mice, and additionally performed a structure-function analysis of RARα. We show that acutely deleting RARα in neurons eliminated RA's effect on excitatory synaptic transmission, and inhibited activity blockade-induced homeostatic synaptic plasticity. By expressing various RARα rescue constructs in RARα KO neurons, we found that the DNA-binding domain of RARα was dispensable for its role in regulating synaptic strength, further supporting the notion that RA and RARα act in a non-transcriptional manner in this context. By contrast, the ligand-binding domain (LBD) and the mRNA-binding domain (F-domain) are both necessary and sufficient for the function of RARα in homeostatic plasticity. Furthermore, we found that homeostatic regulation performed by the LBD/F-domains leads to insertion of calcium-permeable AMPA receptors. Our results confirm with unequivocal genetic approaches that RA and RARα perform essential non-transcriptional functions in regulating synaptic strength, and establish a functional link between the various domains of RARα and their involvement in regulating protein synthesis and excitatory synaptic transmission during homeostatic plasticity.
全反式视黄酸(RA)通过调节基因转录在大脑发育中发挥重要作用。最近,提出了 RA 在成熟大脑中的一种新的发育后作用。具体来说,RA 可快速增强兴奋性突触传递,而不依赖于转录调节。当兴奋性突触传递被慢性阻断时,RA 合成被诱导,然后 RA 激活树突蛋白合成和同型 GluA1 AMPA 受体的突触插入,从而以稳态的方式补偿神经元活动的丧失。RA 的这种作用被认为是由其经典受体 RARα介导的,但没有遗传证据。因此,我们在这里使用条件性 RARα 敲除(KO)小鼠测试了 RARα 在稳态可塑性中的基本要求,并对 RARα 进行了结构功能分析。我们发现,神经元中 RARα 的急性缺失消除了 RA 对兴奋性突触传递的影响,并抑制了活性阻断诱导的稳态突触可塑性。通过在 RARα KO 神经元中表达各种 RARα 拯救构建体,我们发现 RARα 的 DNA 结合域对于调节突触强度的作用是可有可无的,这进一步支持了 RA 和 RARα 在这种情况下以非转录方式发挥作用的观点。相比之下,配体结合域(LBD)和 mRNA 结合域(F 域)对于 RARα 在稳态可塑性中的功能都是必需且充分的。此外,我们发现 LBD/F 域的稳态调节导致钙通透性 AMPA 受体的插入。我们的结果通过明确的遗传方法证实,RA 和 RARα 在调节突触强度方面发挥着重要的非转录功能,并在各种 RARα 结构域与其在稳态可塑性中参与调节蛋白质合成和兴奋性突触传递之间建立了功能联系。