Institute of Medical Psychology, Otto-von-Guericke University, Magdeburg, Germany.
Arch Toxicol. 2012 Jul;86(7):1099-105. doi: 10.1007/s00204-012-0832-4. Epub 2012 Mar 16.
Because the potential neurotoxicity of nanoparticles is a significant issue, characterisation of nanoparticle entry into the brain is essential. Here, we describe an in vivo confocal neuroimaging method (ICON) of visualising the entry of fluorescent particles into the parenchyma of the central nervous system (CNS) in live animals using the retina as a model. Rats received intravenous injections of fluorescence-labelled polybutyl cyanoacrylate nanoparticles that had been synthesised by a standard miniemulsion polymerisation process. We performed live recording with ICON from before and up to 9 days after particle injection and took photomicrographs of the retina. In addition, selective retrograde labelling of the retinal ganglion cells was achieved by stereotaxic injection of a fluorescent dye into the superior colliculus. Using ICON, we observed vascular kinetics of nanoparticles (wash-in within seconds), their passage to the retina parenchyma (within minutes) and their distribution (mainly cellular) under in vivo conditions. For the detection of cell loss--which is important for the evaluation of toxic effects--in another experiment, we semi-quantitatively analysed the selectively labelled retinal neurons. Our results suggest that the dye per se does not lead to neuronal death. With ICON, it is possible to study nanoparticle kinetics in the retina as a model of the blood-brain barrier. Imaging data can be acquired within seconds after the injection, and the long-term fate of cellular uptake can be followed for many days to study the cellular/extracellular distribution of the nanoparticles. ICON is thus an effective and meaningful tool to investigate nanoparticle/CNS interactions.
由于纳米颗粒的潜在神经毒性是一个重大问题,因此对纳米颗粒进入大脑的特性进行描述是至关重要的。在这里,我们描述了一种体内共聚焦神经成像方法(ICON),该方法可用于活体动物中可视化荧光颗粒进入中枢神经系统(CNS)实质的情况,视网膜是该方法的一个模型。大鼠接受了静脉内注射荧光标记的聚丁基氰基丙烯酸酯纳米颗粒,这些纳米颗粒是通过标准的细乳液聚合过程合成的。我们在粒子注射前和注射后长达 9 天进行了 ICON 活体记录,并对视网膜进行了显微照相。此外,通过立体定向将荧光染料注入上丘来实现视网膜神经节细胞的选择性逆行标记。使用 ICON,我们观察到了纳米颗粒的血管动力学(在几秒钟内冲洗)、它们向视网膜实质的传递(在几分钟内)以及它们在体内条件下的分布(主要是细胞内)。在另一项实验中,为了检测细胞丢失(这对于评估毒性作用很重要),我们对选择性标记的视网膜神经元进行了半定量分析。我们的结果表明,染料本身不会导致神经元死亡。使用 ICON,可以研究视网膜中的纳米颗粒动力学作为血脑屏障的模型。注射后几秒钟内即可获得成像数据,并且可以在数天内跟踪细胞摄取的长期命运,以研究纳米颗粒的细胞/细胞外分布。因此,ICON 是一种研究纳米颗粒/CNS 相互作用的有效且有意义的工具。