Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.
Eur J Neurosci. 2010 Feb;31(3):521-8. doi: 10.1111/j.1460-9568.2010.07078.x. Epub 2010 Jan 25.
With in vivo confocal neuroimaging (ICON), single retinal ganglion cells (RGCs) can be visualized non-invasively, repeatedly, in real-time and under natural conditions. Here we report the use of ICON to visualize dynamic changes in RGC morphology, connectivity and functional activation using calcium markers, and to visualize nanoparticle transport across the blood-retina barrier by fluorescent dyes. To document the versatility of ICON, we studied the cellular response to optic nerve injury, and found evidence of reversible soma swelling, recovery of retrograde axonal transport and a difference in calcium activation dynamics between surviving and dying RGCs. This establishes ICON as a unique tool for studying CNS physiology and pathophysiology in real-time on a cellular level. ICON has potential applications in different research fields, such as neuroprotection/regeneration, degeneration, pharmacology, toxicity and drug delivery.
利用活体共聚焦神经成像(ICON),可以非侵入性、重复、实时和在自然条件下可视化单个视网膜神经节细胞(RGC)。在这里,我们报告使用 ICON 可视化钙标记物的 RGC 形态、连接和功能激活的动态变化,以及使用荧光染料可视化纳米颗粒穿过血视网膜屏障的运输。为了证明 ICON 的多功能性,我们研究了视神经损伤后的细胞反应,发现了可恢复的体肿胀、逆行轴突运输的恢复以及存活和死亡的 RGC 之间钙激活动力学的差异的证据。这确立了 ICON 作为一种独特的工具,可实时在细胞水平上研究中枢神经系统的生理学和病理生理学。ICON 在不同的研究领域具有潜在的应用,如神经保护/再生、变性、药理学、毒性和药物输送。