Suppr超能文献

使用宽松的方向约束进行 MEG 的稀疏电流源估计。

Sparse current source estimation for MEG using loose orientation constraints.

机构信息

Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

Hum Brain Mapp. 2013 Sep;34(9):2190-201. doi: 10.1002/hbm.22057. Epub 2012 Mar 22.

Abstract

Spatially focal source estimates for magnetoencephalography (MEG) and electroencephalography (EEG) data can be obtained by imposing a minimum ℓ(1) -norm constraint on the distribution of the source currents. Anatomical information about the expected locations and orientations of the sources can be included in the source models. In particular, the sources can be assumed to be oriented perpendicular to the cortical surface. We introduce a minimum ℓ(1) -norm estimation source modeling approach with loose orientation constraints (ℓ(1) LOC), which integrates the estimation of the orientation, location, and strength of the source currents into a cost function to jointly model the residual error and the ℓ(1) -norm of the source estimates. Evaluation with simulated MEG data indicated that the ℓ(1) LOC method can provide low spatial dispersion, high localization accuracy, and high source detection rates. Application to somatosensory and auditory MEG data resulted in physiologically reasonable source distributions. The proposed ℓ(1) LOC method appears useful for incorporating anatomical information about the source orientations into sparse source estimation of MEG data.

摘要

基于源电流分布施加最小 l(1) 范数约束,可以获得脑磁图 (MEG) 和脑电图 (EEG) 数据的空间聚焦源估计。可以在源模型中包含有关源的预期位置和方向的解剖学信息。具体而言,可以假设源垂直于皮质表面定向。我们引入了一种具有松散方向约束的最小 l(1) 范数估计源建模方法 (l(1) LOC),该方法将源电流的方向、位置和强度的估计集成到一个代价函数中,以联合对残差和源估计的 l(1) 范数进行建模。使用模拟的 MEG 数据进行的评估表明,l(1) LOC 方法可以提供低空间分散度、高定位精度和高源检测率。应用于体感和听觉 MEG 数据,得到了生理上合理的源分布。所提出的 l(1) LOC 方法似乎有助于将源方向的解剖学信息纳入 MEG 数据的稀疏源估计。

相似文献

1
Sparse current source estimation for MEG using loose orientation constraints.
Hum Brain Mapp. 2013 Sep;34(9):2190-201. doi: 10.1002/hbm.22057. Epub 2012 Mar 22.
2
Spatially sparse source cluster modeling by compressive neuromagnetic tomography.
Neuroimage. 2010 Oct 15;53(1):146-60. doi: 10.1016/j.neuroimage.2010.05.013. Epub 2010 May 19.
4
A distributed spatio-temporal EEG/MEG inverse solver.
Neuroimage. 2009 Feb 1;44(3):932-46. doi: 10.1016/j.neuroimage.2008.05.063. Epub 2008 Jun 14.
5
Distributed current estimates using cortical orientation constraints.
Hum Brain Mapp. 2006 Jan;27(1):1-13. doi: 10.1002/hbm.20155.
6
EEG/MEG source imaging using fMRI informed time-variant constraints.
Hum Brain Mapp. 2018 Apr;39(4):1700-1711. doi: 10.1002/hbm.23945. Epub 2018 Jan 2.
7
Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation.
Neuroimage. 2010 Aug 1;52(1):97-108. doi: 10.1016/j.neuroimage.2010.03.001. Epub 2010 Mar 6.
8
Monte Carlo simulation studies of EEG and MEG localization accuracy.
Hum Brain Mapp. 2002 May;16(1):47-62. doi: 10.1002/hbm.10024.
9
A Subspace Pursuit-based Iterative Greedy Hierarchical solution to the neuromagnetic inverse problem.
Neuroimage. 2014 Feb 15;87:427-43. doi: 10.1016/j.neuroimage.2013.09.008. Epub 2013 Sep 18.
10
A distributed spatio-temporal EEG/MEG inverse solver.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):26-34. doi: 10.1007/978-3-540-85988-8_4.

引用本文的文献

1
A comparison of automated and manual co-registration for magnetoencephalography.
PLoS One. 2020 Apr 29;15(4):e0232100. doi: 10.1371/journal.pone.0232100. eCollection 2020.
2
MEG Source Imaging and Group Analysis Using VBMEG.
Front Neurosci. 2019 Mar 22;13:241. doi: 10.3389/fnins.2019.00241. eCollection 2019.
3
Sparse EEG/MEG source estimation via a group lasso.
PLoS One. 2017 Jun 12;12(6):e0176835. doi: 10.1371/journal.pone.0176835. eCollection 2017.
4
The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction.
IEEE Trans Med Imaging. 2016 Oct;35(10):2218-2228. doi: 10.1109/TMI.2016.2553445. Epub 2016 Apr 13.

本文引用的文献

2
Sensitivity of MEG and EEG to source orientation.
Brain Topogr. 2010 Sep;23(3):227-32. doi: 10.1007/s10548-010-0154-x. Epub 2010 Jul 18.
3
Spatially sparse source cluster modeling by compressive neuromagnetic tomography.
Neuroimage. 2010 Oct 15;53(1):146-60. doi: 10.1016/j.neuroimage.2010.05.013. Epub 2010 May 19.
4
A distributed spatio-temporal EEG/MEG inverse solver.
Neuroimage. 2009 Feb 1;44(3):932-46. doi: 10.1016/j.neuroimage.2008.05.063. Epub 2008 Jun 14.
5
Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation.
Neuroimage. 2008 Sep 1;42(3):1069-77. doi: 10.1016/j.neuroimage.2008.05.064. Epub 2008 Jun 14.
6
Sparse source imaging in electroencephalography with accurate field modeling.
Hum Brain Mapp. 2008 Sep;29(9):1053-67. doi: 10.1002/hbm.20448.
7
Vector-based spatial-temporal minimum L1-norm solution for MEG.
Neuroimage. 2006 Jul 1;31(3):1025-37. doi: 10.1016/j.neuroimage.2006.01.029. Epub 2006 Mar 15.
8
Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates.
Neuroimage. 2006 May 15;31(1):160-71. doi: 10.1016/j.neuroimage.2005.11.054. Epub 2006 Mar 6.
9
Distributed current estimates using cortical orientation constraints.
Hum Brain Mapp. 2006 Jan;27(1):1-13. doi: 10.1002/hbm.20155.
10
A comparison of random field theory and permutation methods for the statistical analysis of MEG data.
Neuroimage. 2005 Apr 1;25(2):383-94. doi: 10.1016/j.neuroimage.2004.09.040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验