Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
Hum Brain Mapp. 2013 Sep;34(9):2190-201. doi: 10.1002/hbm.22057. Epub 2012 Mar 22.
Spatially focal source estimates for magnetoencephalography (MEG) and electroencephalography (EEG) data can be obtained by imposing a minimum ℓ(1) -norm constraint on the distribution of the source currents. Anatomical information about the expected locations and orientations of the sources can be included in the source models. In particular, the sources can be assumed to be oriented perpendicular to the cortical surface. We introduce a minimum ℓ(1) -norm estimation source modeling approach with loose orientation constraints (ℓ(1) LOC), which integrates the estimation of the orientation, location, and strength of the source currents into a cost function to jointly model the residual error and the ℓ(1) -norm of the source estimates. Evaluation with simulated MEG data indicated that the ℓ(1) LOC method can provide low spatial dispersion, high localization accuracy, and high source detection rates. Application to somatosensory and auditory MEG data resulted in physiologically reasonable source distributions. The proposed ℓ(1) LOC method appears useful for incorporating anatomical information about the source orientations into sparse source estimation of MEG data.
基于源电流分布施加最小 l(1) 范数约束,可以获得脑磁图 (MEG) 和脑电图 (EEG) 数据的空间聚焦源估计。可以在源模型中包含有关源的预期位置和方向的解剖学信息。具体而言,可以假设源垂直于皮质表面定向。我们引入了一种具有松散方向约束的最小 l(1) 范数估计源建模方法 (l(1) LOC),该方法将源电流的方向、位置和强度的估计集成到一个代价函数中,以联合对残差和源估计的 l(1) 范数进行建模。使用模拟的 MEG 数据进行的评估表明,l(1) LOC 方法可以提供低空间分散度、高定位精度和高源检测率。应用于体感和听觉 MEG 数据,得到了生理上合理的源分布。所提出的 l(1) LOC 方法似乎有助于将源方向的解剖学信息纳入 MEG 数据的稀疏源估计。