NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO 80305-3328, USA.
Philos Trans R Soc Lond B Biol Sci. 2012 May 5;367(1593):1256-64. doi: 10.1098/rstb.2011.0377.
The effects of anthropogenic emissions of nitrous oxide (N(2)O), carbon dioxide (CO(2)), methane (CH(4)) and the halocarbons on stratospheric ozone (O(3)) over the twentieth and twenty-first centuries are isolated using a chemical model of the stratosphere. The future evolution of ozone will depend on each of these gases, with N(2)O and CO(2) probably playing the dominant roles as halocarbons return towards pre-industrial levels. There are nonlinear interactions between these gases that preclude unambiguously separating their effect on ozone. For example, the CH(4) increase during the twentieth century reduced the ozone losses owing to halocarbon increases, and the N(2)O chemical destruction of O(3) is buffered by CO(2) thermal effects in the middle stratosphere (by approx. 20% for the IPCC A1B/WMO A1 scenario over the time period 1900-2100). Nonetheless, N(2)O is expected to continue to be the largest anthropogenic emission of an O(3)-destroying compound in the foreseeable future. Reductions in anthropogenic N(2)O emissions provide a larger opportunity for reduction in future O(3) depletion than any of the remaining uncontrolled halocarbon emissions. It is also shown that 1980 levels of O(3) were affected by halocarbons, N(2)O, CO(2) and CH(4), and thus may not be a good choice of a benchmark of O(3) recovery.
使用平流层化学模式,孤立出人为排放一氧化二氮(N2O)、二氧化碳(CO2)、甲烷(CH4)和卤代烃对 20 世纪和 21 世纪平流层臭氧(O3)的影响。臭氧的未来演变将取决于这些气体中的每一种,随着卤代烃回归到工业化前的水平,N2O 和 CO2 可能会起到主导作用。这些气体之间存在非线性相互作用,无法明确区分它们对臭氧的影响。例如,20 世纪 CH4 的增加减少了因卤代烃增加而导致的臭氧损耗,而 N2O 对 O3 的化学破坏则被中层平流层 CO2 热效应缓冲(在 1900-2100 年期间,IPCC A1B/WMO A1 情景下,约为 20%)。尽管如此,在可预见的未来,N2O 仍将是最大的人为排放的 O3 破坏化合物。减少人为 N2O 排放为减少未来 O3 消耗提供了更大的机会,超过任何剩余的不受控制的卤代烃排放。结果还表明,1980 年的 O3 水平受到卤代烃、N2O、CO2 和 CH4 的影响,因此可能不是 O3 恢复的基准的理想选择。