Department of Bioinformatics and Biostatistics, School of Public Health, Emory University at Atlanta, GA 30322, USA.
Bioinformatics. 2012 May 1;28(9):1280-1. doi: 10.1093/bioinformatics/bts124. Epub 2012 Mar 25.
With the increasing availability of high-density methylation microarrays, there has been growing interest in analysis of DNA methylation data. We have developed CpGassoc, an R package that can efficiently perform the statistical analysis needed for increasingly large methylation datasets. CpGassoc is a modular, expandable package with functions to perform rapid analyses of DNA methylation data via fixed or mixed effects models, to perform basic quality control, to carry out permutation tests, and to display results via an array of publication-quality plots.
CpGassoc is implemented in R and is freely available at http://genetics.emory.edu/conneely; we are in the process of submitting it to CRAN.
随着高密度甲基化微阵列的日益普及,人们对 DNA 甲基化数据分析越来越感兴趣。我们开发了 CpGassoc,这是一个 R 包,可以有效地对越来越大的甲基化数据集进行统计分析。CpGassoc 是一个模块化、可扩展的包,具有通过固定或混合效应模型快速分析 DNA 甲基化数据、进行基本质量控制、进行置换检验以及通过一系列出版质量的图形显示结果的功能。
CpGassoc 是用 R 实现的,可以在 http://genetics.emory.edu/conneely 上免费获得;我们正在将其提交给 CRAN。