Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany.
Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
J Biol Chem. 2012 May 18;287(21):17637-17644. doi: 10.1074/jbc.M111.331652. Epub 2012 Mar 26.
Dodecins, a group of flavin-binding proteins with a dodecameric quaternary structure, are able to incorporate two flavins within each of their six identical binding pockets building an aromatic tetrade with two tryptophan residues. Dodecin from the archaeal Halobacterium salinarum is a riboflavin storage device. We demonstrate that unwanted side reactions induced by reactive riboflavin species and degradation of riboflavin are avoided by ultrafast depopulation of the reactive excited state of riboflavin. Intriguingly, in this process, the staggered riboflavin dimers do not interact in ground and photoexcited states. Rather, within the tetrade assembly, each riboflavin is kept under the control of the respective adjacent tryptophan, which suggests that the stacked arrangement is a matter of optimizing the flavin load. We further identify an electron transfer in combination with a proton transfer as a central element of the effective excited state depopulation mechanism. Structural and functional comparisons of the archaeal dodecin with bacterial homologs reveal diverging evolution. Bacterial dodecins bind the flavin FMN instead of riboflavin and exhibit a clearly different binding pocket design with inverse incorporations of flavin dimers. The different adoption of flavin changes photochemical properties, making bacterial dodecin a comparably less efficient quencher of flavins. This supports a functional role different for bacterial and archaeal dodecins.
十二聚体是一类具有十二聚体四级结构的黄素结合蛋白,能够在其六个相同的结合口袋中的每个口袋中结合两个黄素,形成带有两个色氨酸残基的芳香十四元环。来自盐杆菌的十二聚体是核黄素的储存装置。我们证明,通过超快耗尽反应性核黄素物种的活性激发态,可以避免由反应性核黄素物种诱导的不需要的副反应和核黄素的降解。有趣的是,在这个过程中,交错的核黄素二聚体在基态和光激发态下不相互作用。相反,在十四元环组装中,每个核黄素都受到各自相邻色氨酸的控制,这表明堆叠排列是优化黄素负载的问题。我们进一步确定电子转移与质子转移相结合是有效激发态去激发机制的核心元素。古菌十二聚体与细菌同源物的结构和功能比较揭示了趋异进化。细菌十二聚体结合黄素 FMN 而不是核黄素,并且表现出明显不同的结合口袋设计,其中黄素二聚体的结合方式相反。黄素的不同采用改变了光化学性质,使细菌十二聚体成为相对效率较低的黄素猝灭剂。这支持了细菌和古菌十二聚体的不同功能作用。