Downs Matthew E, Nguyen An M, Herzog Florian A, Hoey David A, Jacobs Christopher R
a Cell and Molecular Biomechanics Laboratory, Department of Biomedical Engineering , Columbia University , 500 W 120th Street, 351 Engineering Terrace, MC 8904, New York , NY 10027 , USA.
Comput Methods Biomech Biomed Engin. 2014;17(1):2-10. doi: 10.1080/10255842.2011.653784. Epub 2012 Mar 28.
In this study we have developed a novel model of the deflection of primary cilia experiencing fluid flow accounting for phenomena not previously considered. Specifically, we developed a large rotation formulation that accounts for rotation at the base of the cilium, the initial shape of the cilium and fluid drag at high deflection angles. We utilised this model to analyse full 3D data-sets of primary cilia deflecting under fluid flow acquired with high-speed confocal microscopy. We found a wide variety of previously unreported bending shapes and behaviours. We also analysed post-flow relaxation patterns. Results from our combined experimental and theoretical approach suggest that the average flexural rigidity of primary cilia might be higher than previously reported (Schwartz et al. 1997, Am J Physiol. 272(1 Pt 2):F132-F138). In addition our findings indicate that the mechanics of primary cilia are richly varied and mechanisms may exist to alter their mechanical behaviour.
在本研究中,我们开发了一种新的模型,用于模拟感受流体流动的初级纤毛的偏转,该模型考虑了以前未考虑的现象。具体而言,我们开发了一种大旋转公式,该公式考虑了纤毛基部的旋转、纤毛的初始形状以及高偏转角下的流体阻力。我们利用该模型分析了通过高速共聚焦显微镜获得的在流体流动下偏转的初级纤毛的完整三维数据集。我们发现了各种各样以前未报道过的弯曲形状和行为。我们还分析了流动后松弛模式。我们结合实验和理论方法得到的结果表明,初级纤毛的平均抗弯刚度可能比以前报道的要高(施瓦茨等人,1997年,《美国生理学杂志》。272(1 Pt 2):F132 - F138)。此外,我们的研究结果表明,初级纤毛的力学特性丰富多样,可能存在改变其力学行为的机制。