Suppr超能文献

可编程微流控细胞阵列用于组合药物筛选。

A programmable microfluidic cell array for combinatorial drug screening.

机构信息

Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA.

出版信息

Lab Chip. 2012 Apr 24;12(10):1813-22. doi: 10.1039/c2lc21202a. Epub 2012 Mar 28.

Abstract

We describe the development of a fully automatic and programmable microfluidic cell culture array that integrates on-chip generation of drug concentrations and pair-wise combinations with parallel culture of cells for drug candidate screening applications. The device has 64 individually addressable cell culture chambers in which cells can be cultured and exposed either sequentially or simultaneously to 64 pair-wise concentration combinations of two drugs. For sequential exposure, a simple microfluidic diffusive mixer is used to generate different concentrations of drugs from two inputs. For generation of 64 pair-wise combinations from two drug inputs, a novel time dependent variable concentration scheme is used in conjunction with the simple diffusive mixer to generate the desired combinations without the need for complex multi-layer structures or continuous medium perfusion. The generation of drug combinations and exposure to specific cell culture chambers are controlled using a LabVIEW interface capable of automatically running a multi-day drug screening experiment. Our cell array does not require continuous perfusion for keeping cells exposed to concentration gradients, minimizing the amount of drug used per experiment, and cells cultured in the chamber are not exposed to significant shear stress continuously. The utility of this platform is demonstrated for inducing loss of viability of PC3 prostate cancer cells using combinations of either doxorubicin or mitoxantrone with TRAIL (TNF-alpha Related Apoptosis Inducing Ligand) either in a sequential or simultaneous format. Our results demonstrate that the device can capture the synergy between different sensitizer drugs and TRAIL and demonstrate the potential of the microfluidic cell array for screening and optimizing combinatorial drug treatments for cancer therapy.

摘要

我们描述了一种完全自动和可编程的微流控细胞培养阵列的开发,该阵列集成了芯片上药物浓度的产生和两种药物的成对组合以及平行培养细胞,用于药物候选物筛选应用。该设备具有 64 个可单独寻址的细胞培养室,细胞可以在其中进行培养,并依次或同时暴露于两种药物的 64 种成对浓度组合中。对于顺序暴露,使用简单的微流控扩散混合器从两个输入中产生不同浓度的药物。对于从两种药物输入生成 64 种成对组合,使用新的时间相关变量浓度方案与简单的扩散混合器结合使用,无需复杂的多层结构或连续介质灌注即可生成所需的组合。药物组合的生成和对特定细胞培养室的暴露使用能够自动运行多天药物筛选实验的 LabVIEW 接口进行控制。我们的细胞阵列不需要连续灌注来使细胞暴露于浓度梯度中,从而最小化每个实验使用的药物量,并且腔室内培养的细胞不会连续受到显著的剪切应力。该平台的实用性通过使用 doxorubicin 或 mitoxantrone 与 TRAIL(TNF-alpha Related Apoptosis Inducing Ligand)的组合,以顺序或同时的方式诱导 PC3 前列腺癌细胞丧失活力来证明。我们的结果表明,该设备可以捕捉不同敏化剂药物和 TRAIL 之间的协同作用,并展示微流控细胞阵列用于筛选和优化癌症治疗组合药物治疗的潜力。

相似文献

1
A programmable microfluidic cell array for combinatorial drug screening.
Lab Chip. 2012 Apr 24;12(10):1813-22. doi: 10.1039/c2lc21202a. Epub 2012 Mar 28.
3
Microfluidic-Enabled Print-to-Screen Platform for High-Throughput Screening of Combinatorial Chemotherapy.
Anal Chem. 2015 Oct 20;87(20):10166-71. doi: 10.1021/acs.analchem.5b00826. Epub 2015 Sep 29.
4
Parallel microfluidic networks for studying cellular response to chemical modulation.
J Biotechnol. 2007 Sep 15;131(3):286-92. doi: 10.1016/j.jbiotec.2007.06.014. Epub 2007 Jun 27.
6
Cell-based drug combination screening with a microfluidic droplet array system.
Anal Chem. 2013 Jul 16;85(14):6740-7. doi: 10.1021/ac400688f. Epub 2013 Jul 3.
7
Orthogonal Screening of Anticancer Drugs Using an Open-Access Microfluidic Tissue Array System.
Anal Chem. 2017 Nov 21;89(22):11976-11984. doi: 10.1021/acs.analchem.7b02021. Epub 2017 Oct 31.
8
Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
Biotechnol J. 2014 Jul;9(7):971-9. doi: 10.1002/biot.201300559. Epub 2014 Jun 12.
10
A 3-D microfluidic combinatorial cell array.
Biomed Microdevices. 2011 Feb;13(1):191-201. doi: 10.1007/s10544-010-9484-4.

引用本文的文献

2
A High-Throughput and Logarithm-Serial-Dilution Microfluidic Chip for Combinational Drug Screening on Tumor Organoids.
ACS Pharmacol Transl Sci. 2024 Dec 4;7(12):4135-4143. doi: 10.1021/acsptsci.4c00565. eCollection 2024 Dec 13.
3
A high-throughput flowless microfluidic single and multi-solute concentration gradient generator: Design and parametric study.
Biomicrofluidics. 2024 Aug 20;18(4):044106. doi: 10.1063/5.0211140. eCollection 2024 Jul.
4
Automated and miniaturized screening of antibiotic combinations robotic-printed combinatorial droplet platform.
Acta Pharm Sin B. 2024 Apr;14(4):1801-1813. doi: 10.1016/j.apsb.2023.11.027. Epub 2023 Nov 28.
5
Creating Physicochemical Gradients in Modular Microporous Annealed Particle Hydrogels via a Microfluidic Method.
Adv Funct Mater. 2020 Feb 5;30(6). doi: 10.1002/adfm.201907102. Epub 2019 Dec 4.
6
A novel array-type microdroplet parallel-generation device.
Anal Sci. 2023 Oct;39(10):1777-1787. doi: 10.1007/s44211-023-00378-6. Epub 2023 May 31.
7
Cell spheroids culture array with modifiable chemical gradients.
Cell Prolif. 2023 May;56(5):e13473. doi: 10.1111/cpr.13473. Epub 2023 May 17.
9
A comparative study of tumour-on-chip models with patient-derived xenografts for predicting chemotherapy efficacy in colorectal cancer patients.
Front Bioeng Biotechnol. 2022 Aug 16;10:952726. doi: 10.3389/fbioe.2022.952726. eCollection 2022.
10
Microfluidics for detection of exosomes and microRNAs in cancer: State of the art.
Mol Ther Nucleic Acids. 2022 Apr 27;28:758-791. doi: 10.1016/j.omtn.2022.04.011. eCollection 2022 Jun 14.

本文引用的文献

2
An integrated microfluidic device for two-dimensional combinatorial dilution.
Lab Chip. 2011 Oct 7;11(19):3277-86. doi: 10.1039/c1lc20449a. Epub 2011 Aug 11.
3
New therapies for castration-resistant prostate cancer: efficacy and safety.
Eur Urol. 2011 Aug;60(2):279-90. doi: 10.1016/j.eururo.2011.04.038. Epub 2011 May 4.
4
Microfluidic cell culture systems for drug research.
Lab Chip. 2010 Apr 21;10(8):939-56. doi: 10.1039/b921695b. Epub 2010 Jan 21.
5
Lytic peptide-mediated sensitization of TRAIL-resistant prostate cancer cells to death receptor agonists.
Cancer Lett. 2010 Jul 28;293(2):240-53. doi: 10.1016/j.canlet.2010.01.012. Epub 2010 Mar 26.
6
Low-dose mithramycin exerts its anticancer effect via the p53 signaling pathway and synergizes with nutlin-3 in gynecologic cancers.
Cancer Sci. 2010 Jun;101(6):1387-95. doi: 10.1111/j.1349-7006.2010.01543.x. Epub 2010 Feb 25.
7
Co-culture of epithelial cells and bacteria for investigating host-pathogen interactions.
Lab Chip. 2010 Jan 7;10(1):43-50. doi: 10.1039/b911367c. Epub 2009 Oct 16.
8
A cell-based high-throughput screen to identify synergistic TRAIL sensitizers.
Cancer Immunol Immunother. 2009 Aug;58(8):1229-44. doi: 10.1007/s00262-008-0637-8. Epub 2008 Dec 17.
9
Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay.
Biotechnol Bioeng. 2008 Aug 15;100(6):1156-65. doi: 10.1002/bit.21836.
10
PDMS absorption of small molecules and consequences in microfluidic applications.
Lab Chip. 2006 Dec;6(12):1484-6. doi: 10.1039/b612140c. Epub 2006 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验