Molecular Eco-physiology, Interdisciplinary Center of Marine and Environmental Research, University of Porto Porto, Portugal ; Fisheries and Maritime Museum Esbjerg, Denmark.
Marine Biological Section, Biological Institute, University of Copenhagen Helsingør, Denmark.
Front Physiol. 2015 Feb 17;6:43. doi: 10.3389/fphys.2015.00043. eCollection 2015.
Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; U crit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (U sus) and minimum cost of transport (COTmin); and (4) variation in U sus correlates positively with optimum swimming speed (U opt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg(-1). Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between U crit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced U crit. We found no evidence of a trade-off between U sus and COTmin. In fact, data revealed significant negative correlations between U sus and COTmin, suggesting that individuals with high U sus also exhibit low COTmin. Finally, there were positive correlations between U sus and U opt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and optimum speed.
在水生动物的运动中,同种内的有氧和无氧特征的变化和权衡仍未得到充分的理解。本研究使用轴向游泳的真鲷(Sparus aurata)和特立尼达孔雀鱼(Poecilia reticulata)这两种鱼类,检验了四个假设:(1)从稳定到不稳定(即爆发辅助)游泳的步态转变与无氧代谢有关,表现为运动后过量耗氧(EPOC);(2)游泳性能(临界游泳速度;Ucrit)的变化与代谢范围(MS)或无氧能力(即最大 EPOC)相关;(3)最大持续游泳速度(U sus)与最小运动成本(COTmin)之间存在权衡;(4)U sus的变化与最佳游泳速度(U opt;即最小单位距离能量消耗的速度)呈正相关。数据收集涉及游泳呼吸测量和视频分析。结果表明,真鲷的无氧游泳成本(即 EPOC)随爆发次数呈线性增加,每次爆发对应 0.53 mg O2 kg(-1)。数据与之前对条纹拟雀鲷(Embiotoca lateralis)的研究一致,表明各种类型的运动中爆发游泳的代谢成本相似。真鲷的 U crit与 MS 或无氧能力之间没有相关性,表明 U crit 受到其他因素的影响,包括形态或生物力学特征。我们没有发现 U sus和 COTmin 之间存在权衡的证据。实际上,数据显示 U sus和 COTmin 之间存在显著的负相关,表明具有高 U sus 的个体也具有低 COTmin。最后,U sus和 U opt 之间存在正相关。本研究表明,在不稳定游泳过程中,无氧代谢具有重要的能量意义,并提供了同种内的证据,表明较高的最大持续游泳速度与较高的游泳经济性和最佳速度有关。