Suppr超能文献

使用变分贝叶斯算法重建小鼠肥胖网络,以采用激进的假阳性控制。

Mouse obesity network reconstruction with a variational Bayes algorithm to employ aggressive false positive control.

机构信息

1Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.

出版信息

BMC Bioinformatics. 2012 Apr 2;13:53. doi: 10.1186/1471-2105-13-53.

Abstract

BACKGROUND

We propose a novel variational Bayes network reconstruction algorithm to extract the most relevant disease factors from high-throughput genomic data-sets. Our algorithm is the only scalable method for regularized network recovery that employs Bayesian model averaging and that can internally estimate an appropriate level of sparsity to ensure few false positives enter the model without the need for cross-validation or a model selection criterion. We use our algorithm to characterize the effect of genetic markers and liver gene expression traits on mouse obesity related phenotypes, including weight, cholesterol, glucose, and free fatty acid levels, in an experiment previously used for discovery and validation of network connections: an F2 intercross between the C57BL/6 J and C3H/HeJ mouse strains, where apolipoprotein E is null on the background.

RESULTS

We identified eleven genes, Gch1, Zfp69, Dlgap1, Gna14, Yy1, Gabarapl1, Folr2, Fdft1, Cnr2, Slc24a3, and Ccl19, and a quantitative trait locus directly connected to weight, glucose, cholesterol, or free fatty acid levels in our network. None of these genes were identified by other network analyses of this mouse intercross data-set, but all have been previously associated with obesity or related pathologies in independent studies. In addition, through both simulations and data analysis we demonstrate that our algorithm achieves superior performance in terms of power and type I error control than other network recovery algorithms that use the lasso and have bounds on type I error control.

CONCLUSIONS

Our final network contains 118 previously associated and novel genes affecting weight, cholesterol, glucose, and free fatty acid levels that are excellent obesity risk candidates.

摘要

背景

我们提出了一种新的变分贝叶斯网络重建算法,以从高通量基因组数据集中提取最相关的疾病因素。我们的算法是唯一可扩展的正则化网络恢复方法,它采用贝叶斯模型平均,并能够内部估计适当的稀疏度水平,以确保在无需交叉验证或模型选择标准的情况下,很少有假阳性进入模型。我们使用该算法来描述遗传标记和肝脏基因表达特征对先前用于发现和验证网络连接的实验中肥胖相关表型(包括体重、胆固醇、葡萄糖和游离脂肪酸水平)的影响:C57BL/6J 和 C3H/HeJ 小鼠品系之间的 F2 杂交,载脂蛋白 E 在背景中缺失。

结果

我们在网络中确定了 11 个基因,包括 Gch1、Zfp69、Dlgap1、Gna14、Yy1、Gabarapl1、Folr2、Fdft1、Cnr2、Slc24a3 和 Ccl19,以及一个与体重、葡萄糖、胆固醇或游离脂肪酸水平直接相关的数量性状位点。在对该小鼠杂交数据集进行的其他网络分析中,没有一个基因被识别出来,但所有这些基因在独立研究中都与肥胖或相关病理有关。此外,通过模拟和数据分析,我们证明我们的算法在功效和 I 型错误控制方面优于其他使用lasso 且具有 I 型错误控制界限的网络恢复算法。

结论

我们的最终网络包含 118 个先前关联和新的基因,这些基因影响体重、胆固醇、葡萄糖和游离脂肪酸水平,是优秀的肥胖风险候选基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/3338387/f100f9e020db/1471-2105-13-53-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验