Department of Soft Matter Physics, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria.
Nat Commun. 2012 Apr 3;3:770. doi: 10.1038/ncomms1772.
Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date.
未来照明、显示器和光伏的特定应用要求将包括大面积、重量轻和机械弹性,以实现双重用途,如电子皮肤、纺织品和表面贴合箔片。在这里,我们在厚度小于 2μm 的塑料箔衬底上展示了基于聚合物的光伏器件,其功率转换效率与基于玻璃的器件相当。它们可以可逆地承受极端机械变形,并具有前所未有的太阳能电池特定重量。我们不是单一弯曲,而是在器件区域内形成一个褶皱的随机网络。处理方法是标准的,因此在发光二极管、电容器和晶体管中应该可以实现相同的重量和灵活性,从而充分实现超薄有机电子学。与迄今为止任何技术的任何其他太阳能电池相比,这些超薄有机太阳能电池更薄、更轻、更灵活,十倍有余。