Suppr超能文献

为在活细胞中观察蛋白质和在酵母中使用高分辨率技术而设计的盒式系列。

Cassette series designed for live-cell imaging of proteins and high-resolution techniques in yeast.

机构信息

Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.

出版信息

Yeast. 2012 Mar;29(3-4):119-36. doi: 10.1002/yea.2895. Epub 2012 Apr 4.

Abstract

During the past decade, it has become clear that protein function and regulation are highly dependent upon intracellular localization. Although fluorescent protein variants are ubiquitously used to monitor protein dynamics, localization and abundance; fluorescent light microscopy techniques often lack the resolution to explore protein heterogeneity and cellular ultrastructure. Several approaches have been developed to identify, characterize and monitor the spatial localization of proteins and complexes at the suborganelle level, yet many of these techniques have not been applied to yeast. Thus, we have constructed a series of cassettes containing codon-optimized epitope tags, fluorescent protein variants that cover the full spectrum of visible light, a TetCys motif used for fluorescein arsenical hairpin (FlAsH)-based localization, and the first evaluation in yeast of a photoswitchable variant, mEos2, to monitor discrete subpopulations of proteins via confocal microscopy. This series of modules, complete with six different selection markers, provides the optimal flexibility during live-cell imaging and multicolour labelling in vivo. Furthermore, high-resolution imaging techniques include the yeast-enhanced TetCys motif, which is compatible with diaminobenzidine photo-oxidation used for protein localization by electron microscopy, and mEos2, which is ideal for super-resolution microscopy. We have examined the utility of our cassettes by analysing all probes fused to the C-terminus of Sec61, a polytopic membrane protein of the endoplasmic reticulum of moderate protein concentration, in order to directly compare fluorescent probes, their utility and technical applications. Our series of cassettes expand the repertoire of molecular tools available to advance targeted spatiotemporal investigations using multiple live-cell, super-resolution or electron microscopy imaging techniques.

摘要

在过去的十年中,很明显蛋白质的功能和调节高度依赖于细胞内定位。尽管荧光蛋白变体被广泛用于监测蛋白质的动态、定位和丰度;荧光显微镜技术往往缺乏分辨率来探索蛋白质异质性和细胞超微结构。已经开发了几种方法来识别、表征和监测亚细胞器水平的蛋白质和复合物的空间定位,但这些技术中的许多尚未应用于酵母。因此,我们构建了一系列包含密码子优化的表位标签、涵盖可见光全谱的荧光蛋白变体、用于荧光素砷发夹(FlAsH)定位的 TetCys 基序,以及第一个在酵母中评估的光开关变体 mEos2,通过共聚焦显微镜监测蛋白质的离散亚群。该系列模块包含六种不同的选择标记,为活细胞成像和体内多色标记提供了最佳的灵活性。此外,高分辨率成像技术包括酵母增强的 TetCys 基序,该基序与二氨基联苯醌光氧化兼容,用于电子显微镜下的蛋白质定位,以及 mEos2,非常适合超分辨率显微镜。我们通过分析融合到内质网膜多跨膜蛋白 Sec61 C 末端的所有探针来检查我们的盒的实用性,以直接比较荧光探针、它们的实用性和技术应用。我们的一系列盒扩展了分子工具的范围,可用于使用多种活细胞、超分辨率或电子显微镜成像技术进行靶向时空研究。

相似文献

1
Cassette series designed for live-cell imaging of proteins and high-resolution techniques in yeast.
Yeast. 2012 Mar;29(3-4):119-36. doi: 10.1002/yea.2895. Epub 2012 Apr 4.
3
Analysis of ER resident proteins in Saccharomyces cerevisiae: implementation of H/KDEL retrieval sequences.
Traffic. 2013 Apr;14(4):365-81. doi: 10.1111/tra.12041. Epub 2013 Feb 4.
4
Structure of the posttranslational Sec protein-translocation channel complex from yeast.
Science. 2019 Jan 4;363(6422):84-87. doi: 10.1126/science.aav6740. Epub 2018 Dec 13.
5
ALIBY: ALFA Nanobody-Based Toolkit for Imaging and Biochemistry in Yeast.
mSphere. 2022 Oct 26;7(5):e0033322. doi: 10.1128/msphere.00333-22. Epub 2022 Oct 3.
6
Structure of the post-translational protein translocation machinery of the ER membrane.
Nature. 2019 Feb;566(7742):136-139. doi: 10.1038/s41586-018-0856-x. Epub 2018 Dec 31.
8
Localization microscopy in yeast.
Methods Cell Biol. 2014;123:253-71. doi: 10.1016/B978-0-12-420138-5.00014-8.
9
Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging.
Mol Biol Cell. 2004 Dec;15(12):5616-22. doi: 10.1091/mbc.e04-06-0454. Epub 2004 Oct 6.
10
The fidgety yeast: focus on high-resolution live yeast cell microscopy.
Methods Mol Biol. 2009;548:75-99. doi: 10.1007/978-1-59745-540-4_5.

引用本文的文献

2
An expanded toolkit of drug resistance cassettes for , , and leads to new insights into the ergosterol pathway.
mSphere. 2023 Dec 20;8(6):e0031123. doi: 10.1128/msphere.00311-23. Epub 2023 Nov 6.
3
Standardization of Synthetic Biology Tools and Assembly Methods for and Emerging Yeast Species.
ACS Synth Biol. 2022 Aug 19;11(8):2527-2547. doi: 10.1021/acssynbio.1c00442. Epub 2022 Aug 8.
4
A role for cell polarity in lifespan and mitochondrial quality control in the budding yeast .
iScience. 2022 Feb 23;25(3):103957. doi: 10.1016/j.isci.2022.103957. eCollection 2022 Mar 18.
5
Roles for L microdomains and ESCRT in ER stress-induced lipid droplet microautophagy in budding yeast.
Mol Biol Cell. 2021 Dec 1;32(22):br12. doi: 10.1091/mbc.E21-04-0179. Epub 2021 Oct 20.
6
Imaging the Actin Cytoskeleton in Live Budding Yeast Cells.
Methods Mol Biol. 2022;2364:53-80. doi: 10.1007/978-1-0716-1661-1_3.
7
ER targeting of non-imported mitochondrial carrier proteins is dependent on the GET pathway.
Life Sci Alliance. 2021 Jan 21;4(3). doi: 10.26508/lsa.202000918. Print 2021 Mar.
9
Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, .
Autophagy. 2021 Sep;17(9):2363-2383. doi: 10.1080/15548627.2020.1826691. Epub 2020 Oct 6.
10
FRET Microscopy in Yeast.
Biosensors (Basel). 2019 Oct 11;9(4):122. doi: 10.3390/bios9040122.

本文引用的文献

1
The power of correlative microscopy: multi-modal, multi-scale, multi-dimensional.
Curr Opin Struct Biol. 2011 Oct;21(5):686-93. doi: 10.1016/j.sbi.2011.06.010. Epub 2011 Jul 21.
2
Decreased secretion and unfolded protein response upregulation.
Methods Enzymol. 2011;491:235-60. doi: 10.1016/B978-0-12-385928-0.00014-6.
3
Rapid FlAsH labelling in the budding yeast Saccharomyces cerevisiae.
J Microsc. 2010 Oct;240(1):6-13. doi: 10.1111/j.1365-2818.2010.03378.x.
4
Triacylglycerol homeostasis: insights from yeast.
J Biol Chem. 2010 May 21;285(21):15663-7. doi: 10.1074/jbc.R110.118356. Epub 2010 Mar 15.
5
Photoactivatable and photoconvertible fluorescent probes for protein labeling.
ACS Chem Biol. 2010 May 21;5(5):507-16. doi: 10.1021/cb1000229.
6
Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging.
Trends Cell Biol. 2009 Nov;19(11):555-65. doi: 10.1016/j.tcb.2009.09.003.
10
A bright and photostable photoconvertible fluorescent protein.
Nat Methods. 2009 Feb;6(2):131-3. doi: 10.1038/nmeth.1296. Epub 2009 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验