Department of Radiology, University of Utah, Salt Lake City, UT 84108, USA.
Med Phys. 2012 Apr;39(4):2170-8. doi: 10.1118/1.3697736.
The goal of this paper is to extend our recently developed FBP (filtered backprojection) algorithm, which has the same characteristics of an iterative Landweber algorithm, to an FBP algorithm with the same characteristics of an iterative MAP (maximum a posteriori) algorithm. The newly developed FBP algorithm also works when the angular sampling interval is not uniform. The projection noise variance can be modeled using a view-based weighting scheme.
The new objective function contains projection noise model dependent weighting factors and image dependent prior (i.e., a Bayesian term). The noise weighting is view-by-view based. For the first time, the FBP algorithm is able to model the projection noise. Based on the formulation of the iterative Landweber MAP algorithm, a frequency-domain window function is derived for each iteration of the Landweber MAP algorithm. As a result, the ramp filter and the windowing function are both modified by the Bayesian component. This new FBP algorithm can be applied to a projection data set that is not uniformly sampled.
Computer simulations show that the new FBP-MAP algorithm with window function index k and the iterative Landweber MAP algorithm with iteration number k give similar reconstructions in terms of resolution and noise texture. An example of transmission x-ray CT shows that the noise modeling method is able to significantly reduce the streaking artifacts associated with low-dose CT.
View-based noise weighting scheme can be introduced to the FBP algorithm as a weighting factor in the window function. The new FBP algorithm is able to provide similar results to the iterative MAP algorithm if the ramp filter is modified with a additive term. Nonuniform sampling and sensitivity can be accommodated by proper backprojection weighting.
本文的目的是扩展我们最近开发的 FBP(滤波反投影)算法,该算法具有与迭代 Landweber 算法相同的特征,扩展为具有与迭代 MAP(最大后验)算法相同特征的 FBP 算法。新开发的 FBP 算法在角度采样间隔不均匀时也能工作。投影噪声方差可以使用基于视图的加权方案进行建模。
新的目标函数包含与投影噪声模型相关的加权因子和与图像相关的先验(即贝叶斯项)。噪声加权是基于视图的。首次,FBP 算法能够对投影噪声进行建模。基于迭代 Landweber MAP 算法的公式,为 Landweber MAP 算法的每次迭代推导出频域窗口函数。因此,斜坡滤波器和窗函数都由贝叶斯分量进行修改。这种新的 FBP 算法可应用于非均匀采样的投影数据集。
计算机模拟表明,具有窗口函数指数 k 的新 FBP-MAP 算法和具有迭代次数 k 的迭代 Landweber MAP 算法在分辨率和噪声纹理方面给出了相似的重建结果。透射 X 射线 CT 的一个示例表明,噪声建模方法能够显著减少与低剂量 CT 相关的条纹伪影。
可以将基于视图的噪声加权方案作为窗口函数中的加权因子引入到 FBP 算法中。如果用加法项修改斜坡滤波器,则新的 FBP 算法能够提供与迭代 MAP 算法相似的结果。通过适当的反向投影加权,可以适应非均匀采样和灵敏度。