French Atomic Energy and Alternative Energy Agency, Laboratory of Innovation for New Energy Technologies and Nanomaterials, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France.
Anal Chem. 2012 May 1;84(9):3973-80. doi: 10.1021/ac2032244. Epub 2012 Apr 20.
The lithium/sulfur battery is a promising electrochemical system that has a high theoretical capacity of 1675 mAh g(-1), but its discharge mechanism is well-known to be a complex multistep process. As the active material dissolves during cycling, this discharge mechanism was investigated through the electrolyte characterization. Using high-performance liquid chromatography, UV-visible absorption, and electron spin resonance spectroscopies, we investigated the electrolyte composition at different discharge potentials in a TEGDME-based electrolyte. In this study, we propose a possible mechanism for sulfur reduction consisting of three steps. Long polysulfide chains are produced during the first reduction step (2.4-2.2 V vs Li(+)/Li), such as S(8)(2-) and S(6)(2-), as evidenced by UV and HPLC data. The S(3)(•-) radical can also be found in solution because of a disproportionation reaction. S(4)(2-) is produced during the second reduction step (2.15-2.1 V vs Li(+)/Li), thus pointing out the gradual decrease of the polysulfide chain lengths. Finally, short polysulfide species, such as S(3)(2-), S(2)(2-), and S(2-), are produced at the end of the reduction process, i.e., between 2.1 and 1.9 V vs Li(+)/Li. The precipitation of the poorly soluble and insulating short polysulfide compounds was evidenced, thus leading to the positive electrode passivation and explaining the early end of discharge.
锂硫电池是一种很有前途的电化学系统,具有高达 1675 mAh g(-1)的理论容量,但众所周知,其放电机制是一个复杂的多步过程。由于活性物质在循环过程中溶解,因此通过电解质特性研究了这种放电机制。我们使用高效液相色谱、紫外-可见吸收和电子自旋共振光谱研究了在基于 TEGDME 的电解质中不同放电电位下的电解质组成。在这项研究中,我们提出了一个可能的硫还原机制,由三个步骤组成。长多硫化物链在第一个还原步骤(2.4-2.2 V 相对于 Li(+)/Li)中产生,如 S(8)(2-)和 S(6)(2-),这可以通过 UV 和 HPLC 数据证明。由于歧化反应,溶液中也可以找到 S(3)(•-)自由基。在第二个还原步骤(2.15-2.1 V 相对于 Li(+)/Li)中生成 S(4)(2-),从而指出多硫化物链长度逐渐减小。最后,在还原过程结束时,即 2.1 至 1.9 V 相对于 Li(+)/Li,会生成短的多硫化物物种,如 S(3)(2-)、S(2)(2-)和 S(2-)。证明了不溶性和绝缘性差的短多硫化物化合物的沉淀,从而导致正极钝化,并解释了放电的早期结束。