Xu Weixuan, Lang Shuangyan, Wang Kaiyang, Zeng Rui, Li Huiqi, Feng Xinran, Krumov Mihail R, Bak Seong-Min, Pollock Christopher J, Yeo Jingjie, Du Yonghua, Abruña Héctor D
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
Sci Adv. 2023 Aug 18;9(33):eadi5108. doi: 10.1126/sciadv.adi5108. Epub 2023 Aug 16.
Lithium-sulfur batteries represent an attractive option for energy storage applications. A deeper understanding of the multistep lithium-sulfur reactions and the electrocatalytic mechanisms are required to develop advanced, high-performance batteries. We have systematically investigated the lithium-sulfur redox processes catalyzed by a cobalt single-atom electrocatalyst (Co-SAs/NC) via operando confocal Raman microscopy and x-ray absorption spectroscopy (XAS). The real-time observations, based on potentiostatic measurements, indicate that Co-SAs/NC efficiently accelerates the lithium-sulfur reduction/oxidation reactions, which display zero-order kinetics. Under galvanostatic discharge conditions, the typical stepwise mechanism of long-chain and intermediate-chain polysulfides is transformed to a concurrent pathway under electrocatalysis. In addition, operando cobalt K-edge XAS studies elucidate the potential-dependent evolution of cobalt's oxidation state and the formation of cobalt-sulfur bonds. Our work provides fundamental insights into the mechanisms of catalyzed lithium-sulfur reactions via operando methods, enabling a deeper understanding of electrocatalysis and interfacial dynamics in electrical energy storage systems.
锂硫电池是储能应用中一个颇具吸引力的选择。要开发先进的高性能电池,需要更深入地了解多步锂硫反应和电催化机制。我们通过原位共聚焦拉曼显微镜和X射线吸收光谱(XAS)系统地研究了钴单原子电催化剂(Co-SAs/NC)催化的锂硫氧化还原过程。基于恒电位测量的实时观测表明,Co-SAs/NC能有效加速锂硫还原/氧化反应,这些反应呈现零级动力学。在恒电流放电条件下,长链和中间链多硫化物的典型逐步机制在电催化作用下转变为并行途径。此外,原位钴K边XAS研究阐明了钴氧化态的电位依赖性演变以及钴硫键的形成。我们的工作通过原位方法为催化锂硫反应的机制提供了基本见解,有助于更深入地理解电能存储系统中的电催化和界面动力学。