Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.
Annu Rev Neurosci. 2012;35:445-62. doi: 10.1146/annurev-neuro-060909-153128. Epub 2012 Apr 5.
The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.
哺乳动物的生物钟系统由在细胞、组织和系统水平上发挥作用的振荡器层级结构组成。一个普遍的分子机制为整个身体的细胞自主生物钟振荡器提供了基础,但这个时钟系统适应了不同的功能环境。在下丘脑的视交叉上核(SCN)中,一群耦合的神经元生物钟振荡器作为生物体的主节奏器,驱动活动和休息、进食、体温和激素的节律。SCN 网络中的耦合赋予了 SCN 节奏器的稳健性,从而为生物体的整体时间结构提供了稳定性。在体内的大多数细胞中,细胞自主生物钟时钟都紧密地交织在代谢途径中。因此,生物钟的适应性意义的一个新观点是它们在协调代谢方面的基本作用。