Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5813-8. doi: 10.1073/pnas.1015551108. Epub 2011 Mar 14.
Food anticipatory behavior (FAA) is induced by limiting access to food for a few hours daily. Animals anticipate this scheduled meal event even without the suprachiasmatic nucleus (SCN), the biological clock. Consequently, a food-entrained oscillator has been proposed to be responsible for meal time estimation. Recent studies suggested the dorsomedial hypothalamus (DMH) as the site for this food-entrained oscillator, which has led to considerable controversy in the literature. Herein we demonstrate by means of c-Fos immunohistochemistry that the neuronal activity of the suprachiasmatic nucleus (SCN), which signals the rest phase in nocturnal animals, is reduced when animals anticipate the scheduled food and, simultaneously, neuronal activity within the DMH increases. Using retrograde tracing and confocal analysis, we show that inhibition of SCN neuronal activity is the consequence of activation of GABA-containing neurons in the DMH that project to the SCN. Next, we show that DMH lesions result in a loss or diminution of FAA, simultaneous with increased activity in the SCN. A subsequent lesion of the SCN restored FAA. We conclude that in intact animals, FAA may only occur when the DMH inhibits the activity of the SCN, thus permitting locomotor activity. As a result, FAA originates from a neuronal network comprising an interaction between the DMH and SCN. Moreover, this study shows that the DMH-SCN interaction may serve as an intrahypothalamic system to gate activity instead of rest overriding circadian predetermined temporal patterns.
食物预期行为(FAA)是通过每天限制几小时的食物摄入来诱导的。即使没有视交叉上核(SCN),即生物钟,动物也会预期这种预定的进餐事件。因此,有人提出食物节律振荡器负责进餐时间的估计。最近的研究表明,背内侧下丘脑(DMH)是这种食物节律振荡器的所在地,这在文献中引起了相当大的争议。在此,我们通过 c-Fos 免疫组织化学证明,在夜间动物中表示休息阶段的视交叉上核(SCN)的神经元活动在动物预期预定食物时会减少,而同时,DMH 内的神经元活动会增加。使用逆行示踪和共聚焦分析,我们表明 SCN 神经元活动的抑制是 DMH 中含有 GABA 的神经元激活的结果,这些神经元投射到 SCN。接下来,我们表明 DMH 损伤导致 FAA 的丧失或减弱,同时 SCN 活动增加。随后的 SCN 损伤恢复了 FAA。我们得出的结论是,在完整的动物中,只有当 DMH 抑制 SCN 的活动时,FAA 才可能发生,从而允许运动活动。因此,FAA 源自一个包括 DMH 和 SCN 之间相互作用的神经元网络。此外,这项研究表明,DMH-SCN 相互作用可以作为一个下丘脑内系统来控制活动,而不是优先考虑生物钟预定的时间模式。