Suppr超能文献

经颅磁刺激中的电场深度-聚焦权衡:50 种线圈设计的模拟比较。

Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs.

机构信息

Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.

出版信息

Brain Stimul. 2013 Jan;6(1):1-13. doi: 10.1016/j.brs.2012.02.005. Epub 2012 Mar 21.

Abstract

BACKGROUND

Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies.

OBJECTIVE

To quantify the electric field focality and depth of penetration of various TMS coils.

METHODS

The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d(1/2), and focality by the tangential spread, S(1/2), defined as the half-value volume (V(1/2)) divided by the half-value depth, S(1/2) = V(1/2)/d(1/2).

RESULTS

The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth-focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d(1/2) are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0-3.5 cm and 0.9-3.4 cm, respectively. However, figure-8 field coils are more focal, having S(1/2) as low as 5 cm(2) compared to 34 cm(2) for circular field coils.

CONCLUSIONS

For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d(1/2) and S(1/2).

摘要

背景

有多种经颅磁刺激(TMS)线圈设计可供选择或已经提出。然而,关键的线圈特性,如电场聚焦和深度衰减,尚未得到充分比较。了解线圈的聚焦和深度特性可以帮助 TMS 研究人员和临床医生选择线圈,并解释 TMS 研究。

目的

定量比较各种 TMS 线圈的电场聚焦和穿透深度。

方法

使用有限元法在球形人头模型中模拟了 50 个 TMS 线圈产生的电场分布。对于每种线圈设计,我们通过半值深度 d(1/2)量化电场穿透深度,通过切向扩展 S(1/2)量化聚焦程度,定义为半值体积(V(1/2))除以半值深度的比值,即 S(1/2)=V(1/2)/d(1/2)。

结果

这 50 个 TMS 线圈表现出广泛的电场聚焦和穿透深度范围,但都遵循深度聚焦的权衡:半值深度较大的线圈不能像更浅层的线圈那样聚焦。产生圆形和 8 字形电场图案的线圈可实现的 d(1/2)范围相似,分别为 1.0-3.5cm 和 0.9-3.4cm。然而,8 字形场线圈的聚焦程度更高,其 S(1/2)低至 5cm(2),而圆形场线圈的 S(1/2)则高达 34cm(2)。

结论

对于任何线圈设计,直接刺激更深脑结构的能力是通过牺牲诱导更广泛电场扩散来获得的。新型线圈设计应使用一致的指标(如 d(1/2)和 S(1/2))与比较线圈进行基准测试。

相似文献

1
Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs.
Brain Stimul. 2013 Jan;6(1):1-13. doi: 10.1016/j.brs.2012.02.005. Epub 2012 Mar 21.
2
Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy.
J Neural Eng. 2018 Aug;15(4):046033. doi: 10.1088/1741-2552/aac967. Epub 2018 Jun 1.
3
Coil design considerations for deep transcranial magnetic stimulation.
Clin Neurophysiol. 2014 Jun;125(6):1202-12. doi: 10.1016/j.clinph.2013.11.038. Epub 2013 Dec 22.
4
Comprehensive Survey on Improved Focality and Penetration Depth of Transcranial Magnetic Stimulation Employing Multi-Coil Arrays.
Int J Environ Res Public Health. 2017 Nov 14;14(11):1388. doi: 10.3390/ijerph14111388.
5
Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation.
PLoS One. 2017 Jun 6;12(6):e0178422. doi: 10.1371/journal.pone.0178422. eCollection 2017.
6
Minimum-energy coils for transcranial magnetic stimulation: application to focal stimulation.
Brain Stimul. 2015 Jan-Feb;8(1):124-34. doi: 10.1016/j.brs.2014.10.002. Epub 2014 Oct 13.
8
Database of 25 validated coil models for electric field simulations for TMS.
Brain Stimul. 2022 May-Jun;15(3):697-706. doi: 10.1016/j.brs.2022.04.017. Epub 2022 Apr 28.
9
Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.
Phys Med Biol. 2017 Mar 21;62(6):2224-2238. doi: 10.1088/1361-6560/aa5b70. Epub 2017 Feb 21.
10
Computational Study Toward Deep Transcranial Magnetic Stimulation Using Coaxial Circular Coils.
IEEE Trans Biomed Eng. 2015 Dec;62(12):2911-9. doi: 10.1109/TBME.2015.2452261. Epub 2015 Jul 2.

引用本文的文献

1
Neurodevelopmental considerations for transcranial magnetic stimulation trials in youth.
Neuropsychopharmacology. 2025 Sep 8. doi: 10.1038/s41386-025-02225-w.
3
[Deep transcranial magnetic stimulation coil design and multi-objective slime mould algorithm].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):716-723. doi: 10.7507/1001-5515.202412058.
4
High-Precision, Low-Threshold Neuromodulation With Ultraflexible Electrode Arrays for Brain-to-Brain Interfaces.
Exploration (Beijing). 2025 Apr 17;5(4):e70040. doi: 10.1002/EXP.70040. eCollection 2025 Aug.
8
Real-time computation of brain E-field for enhanced transcranial magnetic stimulation neuronavigation and optimization.
Imaging Neurosci (Camb). 2025 Jan 2;3. doi: 10.1162/imag_a_00412. eCollection 2025.
9
Systematic cross-species comparison of prefrontal cortex functional networks targeted via transcranial magnetic stimulation.
Imaging Neurosci (Camb). 2024 Jul 24;2. doi: 10.1162/imag_a_00243. eCollection 2024.

本文引用的文献

1
Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices.
Brain Stimul. 2012 Oct;5(4):435-53. doi: 10.1016/j.brs.2011.10.001. Epub 2011 Nov 1.
2
Transcranial magnetic stimulation coil with electronically switchable active and sham modes.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1993-6. doi: 10.1109/IEMBS.2011.6090561.
3
Fabrication of a prototype magnetic stimulator equipped with eccentric spiral coils.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1985-8. doi: 10.1109/IEMBS.2011.6090559.
4
The role of medial prefrontal cortex in theory of mind: a deep rTMS study.
Behav Brain Res. 2012 Mar 1;228(1):87-90. doi: 10.1016/j.bbr.2011.11.037. Epub 2011 Dec 6.
5
Differential effects of deep TMS of the prefrontal cortex on apathy and depression.
Brain Stimul. 2011 Oct;4(4):266-74. doi: 10.1016/j.brs.2010.12.004. Epub 2011 Jan 22.
6
How the brain tissue shapes the electric field induced by transcranial magnetic stimulation.
Neuroimage. 2011 Oct 1;58(3):849-59. doi: 10.1016/j.neuroimage.2011.06.069. Epub 2011 Jul 1.
7
Deep transcranial magnetic stimulation add-on for treatment of negative symptoms and cognitive deficits of schizophrenia: a feasibility study.
Int J Neuropsychopharmacol. 2011 Aug;14(7):991-6. doi: 10.1017/S1461145711000642. Epub 2011 Apr 28.
8
Effectiveness of a second deep TMS in depression: a brief report.
Prog Neuropsychopharmacol Biol Psychiatry. 2011 Jun 1;35(4):1041-4. doi: 10.1016/j.pnpbp.2011.02.015. Epub 2011 Feb 24.
10
Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study.
J Neural Eng. 2011 Feb;8(1):016007. doi: 10.1088/1741-2560/8/1/016007. Epub 2011 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验