Suppr超能文献

蛋白质对配体的极化作用。

On the polarization of ligands by proteins.

机构信息

Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, USA.

Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois 60616, USA.

出版信息

Phys Chem Chem Phys. 2020 Jun 4;22(21):12044-12057. doi: 10.1039/d0cp00376j.

Abstract

Although ligand-binding sites in many proteins contain a high number density of charged side chains that can polarize small organic molecules and influence binding, the magnitude of this effect has not been studied in many systems. Here, we use a quantum mechanics/molecular mechanics (QM/MM) approach, in which the ligand is the QM region, to compute the ligand polarization energy of 286 protein-ligand complexes from the PDBBind Core Set (release 2016). Calculations were performed both with and without implicit solvent based on the domain decomposition Conductor-like Screening Model. We observe that the ligand polarization energy is linearly correlated with the magnitude of the electric field acting on the ligand, the magnitude of the induced dipole moment, and the classical polarization energy. The influence of protein and cation charges on the ligand polarization diminishes with the distance and is below 2 kcal mol-1 at 9 Å and 1 kcal mol-1 at 12 Å. Compared to these embedding field charges, implicit solvent has a relatively minor effect on ligand polarization. Considering both polarization and solvation appears essential to computing negative binding energies in some crystallographic complexes. Solvation, but not polarization, is essential for achieving moderate correlation with experimental binding free energies.

摘要

虽然许多蛋白质中的配体结合位点含有高密度的带电侧链,这些侧链可以使小分子有机化合物极化并影响结合,但在许多系统中尚未研究这种效应的大小。在这里,我们使用量子力学/分子力学 (QM/MM) 方法,其中配体是 QM 区域,计算了来自 PDBBind Core Set(2016 年发布)的 286 个蛋白质-配体复合物的配体极化能。计算是基于域分解导体样屏蔽模型进行的,同时考虑了有无隐溶剂。我们观察到,配体极化能与作用在配体上的电场强度、诱导偶极矩的大小和经典极化能呈线性相关。蛋白质和阳离子电荷对配体极化的影响随距离而减弱,在 9 Å 时小于 2 kcal/mol,在 12 Å 时小于 1 kcal/mol。与这些嵌入场电荷相比,隐溶剂对配体极化的影响相对较小。考虑到极化和溶剂化对于计算一些晶体复合物中的负结合能至关重要。溶剂化而不是极化对于实现与实验结合自由能的适度相关性至关重要。

相似文献

1
On the polarization of ligands by proteins.
Phys Chem Chem Phys. 2020 Jun 4;22(21):12044-12057. doi: 10.1039/d0cp00376j.
2
Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
J Mol Graph Model. 2017 Mar;72:70-80. doi: 10.1016/j.jmgm.2016.12.011. Epub 2016 Dec 21.
3
Estimates of ligand-binding affinities supported by quantum mechanical methods.
Interdiscip Sci. 2010 Mar;2(1):21-37. doi: 10.1007/s12539-010-0083-0. Epub 2010 Jan 28.
4
Fragment quantum mechanical calculation of proteins and its applications.
Acc Chem Res. 2014 Sep 16;47(9):2748-57. doi: 10.1021/ar500077t. Epub 2014 May 22.
5
Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
J Chem Theory Comput. 2015 Sep 8;11(9):4450-9. doi: 10.1021/acs.jctc.5b00483. Epub 2015 Aug 21.
7
Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.
J Chem Theory Comput. 2016 Feb 9;12(2):499-511. doi: 10.1021/acs.jctc.5b00920. Epub 2016 Jan 12.
8
Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
J Comput Chem. 2018 Aug 15;39(22):1707-1719. doi: 10.1002/jcc.25345. Epub 2018 May 8.
10
A QM/MM study of the binding of RAPTA ligands to cathepsin B.
J Comput Aided Mol Des. 2011 Aug;25(8):729-42. doi: 10.1007/s10822-011-9448-7. Epub 2011 Jun 24.

引用本文的文献

6

本文引用的文献

1
Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications.
Annu Rev Biophys. 2019 May 6;48:371-394. doi: 10.1146/annurev-biophys-070317-033349. Epub 2019 Mar 27.
2
Simple Entropy Terms for End-Point Binding Free Energy Calculations.
J Chem Theory Comput. 2018 Nov 13;14(11):6035-6049. doi: 10.1021/acs.jctc.8b00418. Epub 2018 Oct 19.
4
Quantum-Mechanics Methodologies in Drug Discovery: Applications of Docking and Scoring in Lead Optimization.
Curr Top Med Chem. 2017;17(23):2663-2680. doi: 10.2174/1568026617666170707120609.
5
Absolute Binding Free Energies between T4 Lysozyme and 141 Small Molecules: Calculations Based on Multiple Rigid Receptor Configurations.
J Chem Theory Comput. 2017 Jun 13;13(6):2930-2944. doi: 10.1021/acs.jctc.6b01183. Epub 2017 May 1.
6
Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
Acc Chem Res. 2017 Feb 21;50(2):302-309. doi: 10.1021/acs.accounts.6b00491. Epub 2017 Feb 9.
7
SQM/COSMO Scoring Function at the DFTB3-D3H4 Level: Unique Identification of Native Protein-Ligand Poses.
J Chem Inf Model. 2017 Feb 27;57(2):127-132. doi: 10.1021/acs.jcim.6b00513. Epub 2017 Jan 17.
8
Incorporating QM and solvation into docking for applications to GPCR targets.
Phys Chem Chem Phys. 2016 Oct 12;18(40):28281-28289. doi: 10.1039/c6cp04742d.
10
Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods.
Chem Rev. 2016 May 11;116(9):5520-66. doi: 10.1021/acs.chemrev.5b00630. Epub 2016 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验