Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan 48109, USA.
ACS Nano. 2012 May 22;6(5):4094-103. doi: 10.1021/nn3004923. Epub 2012 Apr 16.
Human embryonic stem cells (hESCs) have great potentials for future cell-based therapeutics. However, their mechanosensitivity to biophysical signals from the cellular microenvironment is not well characterized. Here we introduced an effective microfabrication strategy for accurate control and patterning of nanoroughness on glass surfaces. Our results demonstrated that nanotopography could provide a potent regulatory signal over different hESC behaviors, including cell morphology, adhesion, proliferation, clonal expansion, and self-renewal. Our results indicated that topological sensing of hESCs might include feedback regulation involving mechanosensory integrin-mediated cell-matrix adhesion, myosin II, and E-cadherin. Our results also demonstrated that cellular responses to nanotopography were cell-type specific, and as such, we could generate a spatially segregated coculture system for hESCs and NIH/3T3 fibroblasts using patterned nanorough glass surfaces.
人类胚胎干细胞(hESCs)在未来的细胞治疗方面具有巨大的潜力。然而,它们对细胞微环境中生物物理信号的机械敏感性尚未得到很好的描述。在这里,我们引入了一种有效的微加工策略,可精确控制和图案化玻璃表面的纳米粗糙度。我们的结果表明,纳米形貌可以为不同的 hESC 行为提供强大的调节信号,包括细胞形态、黏附、增殖、克隆扩增和自我更新。我们的结果表明,hESC 的拓扑感知可能包括反馈调节,涉及机械敏感整合素介导的细胞-基质黏附、肌球蛋白 II 和 E-钙黏蛋白。我们的结果还表明,细胞对纳米形貌的反应具有细胞类型特异性,因此,我们可以使用图案化纳米粗糙玻璃表面为 hESCs 和 NIH/3T3 成纤维细胞生成空间分离的共培养系统。