Suppr超能文献

SCL/TAL1 调控人胚胎干细胞的造血特化。

SCL/TAL1 regulates hematopoietic specification from human embryonic stem cells.

机构信息

Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research (GENyO), Granada, Spain.

出版信息

Mol Ther. 2012 Jul;20(7):1443-53. doi: 10.1038/mt.2012.49. Epub 2012 Apr 10.

Abstract

Determining the molecular regulators/pathways responsible for the specification of human embryonic stem cells (hESCs) into hematopoietic precursors has far-reaching implications for potential cell therapies and disease modeling. Mouse models lacking SCL/TAL1 (stem cell leukemia/T-cell acute lymphocytic leukemia 1) do not survive beyond early embryogenesis because of complete absence of hematopoiesis, indicating that SCL is a master early hematopoietic regulator. SCL is commonly found rearranged in human leukemias. However, there is barely information on the role of SCL on human embryonic hematopoietic development. Differentiation and sorting assays show that endogenous SCL expression parallels hematopoietic specification of hESCs and that SCL is specifically expressed in hematoendothelial progenitors (CD45(-)CD31(+)CD34(+)) and, to a lesser extent, on CD45(+) hematopoietic cells. Enforced expression of SCL in hESCs accelerates the emergence of hematoendothelial progenitors and robustly promotes subsequent differentiation into primitive (CD34(+)CD45(+)) and total (CD45(+)) blood cells with higher clonogenic potential. Short-hairpin RNA-based silencing of endogenous SCL abrogates hematopoietic specification of hESCs, confirming the early hematopoiesis-promoting effect of SCL. Unfortunately, SCL expression on its own is not sufficient to confer in vivo engraftment to hESC-derived hematopoietic cells, suggesting that additional yet undefined master regulators are required to orchestrate the stepwise hematopoietic developmental process leading to the generation of definitive in vivo functional hematopoiesis from hESCs.

摘要

确定将人类胚胎干细胞(hESC)特化为造血前体细胞的分子调控因子/途径,对于潜在的细胞治疗和疾病建模具有深远的意义。由于造血完全缺失,缺乏 SCL/TAL1(干细胞白血病/T 细胞急性淋巴细胞白血病 1)的小鼠模型在早期胚胎发生后无法存活,这表明 SCL 是早期造血的主要调控因子。SCL 通常在人类白血病中发生重排。然而,关于 SCL 在人类胚胎造血发育中的作用的信息几乎没有。分化和分选实验表明,内源性 SCL 表达与 hESC 的造血特化平行,并且 SCL 特异性表达于造血内皮祖细胞(CD45(-)CD31(+)CD34(+)),并且在较小程度上表达于 CD45(+)造血细胞。在 hESC 中强制表达 SCL 可加速造血内皮祖细胞的出现,并有力地促进随后向原始(CD34(+)CD45(+))和总(CD45(+))血细胞的分化,具有更高的克隆形成潜力。基于短发夹 RNA 的内源性 SCL 沉默会破坏 hESC 的造血特化,证实了 SCL 对早期造血的促进作用。不幸的是,SCL 表达本身不足以赋予 hESC 衍生的造血细胞体内植入能力,这表明需要额外的、尚未定义的主调控因子来协调导致从 hESC 生成体内功能性造血的逐步造血发育过程。

相似文献

1
SCL/TAL1 regulates hematopoietic specification from human embryonic stem cells.
Mol Ther. 2012 Jul;20(7):1443-53. doi: 10.1038/mt.2012.49. Epub 2012 Apr 10.
2
SCL/TAL1-mediated transcriptional network enhances megakaryocytic specification of human embryonic stem cells.
Mol Ther. 2015 Jan;23(1):158-70. doi: 10.1038/mt.2014.196. Epub 2014 Oct 8.
4
Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo.
Blood. 2003 Jan 15;101(2):508-16. doi: 10.1182/blood-2002-06-1699. Epub 2002 Sep 19.
5
SCL/TAL1 in Hematopoiesis and Cellular Reprogramming.
Curr Top Dev Biol. 2016;118:163-204. doi: 10.1016/bs.ctdb.2016.01.004. Epub 2016 Feb 18.
6
7
HOXA9 promotes hematopoietic commitment of human embryonic stem cells.
Blood. 2014 Nov 13;124(20):3065-75. doi: 10.1182/blood-2014-03-558825. Epub 2014 Sep 3.
8
Effect of endoglin overexpression during embryoid body development.
Exp Hematol. 2012 Oct;40(10):837-46. doi: 10.1016/j.exphem.2012.06.007. Epub 2012 Jun 19.
9
Ectopic Runx1 expression rescues Tal-1-deficiency in the generation of primitive and definitive hematopoiesis.
PLoS One. 2013 Jul 29;8(7):e70116. doi: 10.1371/journal.pone.0070116. Print 2013.

引用本文的文献

1
Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease.
Cells. 2024 Jul 29;13(15):1276. doi: 10.3390/cells13151276.
2
The genesis of human hematopoietic stem cells.
Blood. 2023 Aug 10;142(6):519-532. doi: 10.1182/blood.2022017934.
5
A Benchmark Side-by-Side Comparison of Two Well-Established Protocols for Hematopoietic Differentiation From Human Pluripotent Stem Cells.
Front Cell Dev Biol. 2021 May 21;9:636704. doi: 10.3389/fcell.2021.636704. eCollection 2021.
6
A non-linear reverse-engineering method for inferring genetic regulatory networks.
PeerJ. 2020 Apr 29;8:e9065. doi: 10.7717/peerj.9065. eCollection 2020.
9
Gene therapy of hematological disorders: current challenges.
Gene Ther. 2019 Aug;26(7-8):296-307. doi: 10.1038/s41434-019-0093-4. Epub 2019 Jul 12.
10
Understanding the Journey of Human Hematopoietic Stem Cell Development.
Stem Cells Int. 2019 May 6;2019:2141475. doi: 10.1155/2019/2141475. eCollection 2019.

本文引用的文献

4
Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells.
Nat Protoc. 2011 Mar;6(3):296-313. doi: 10.1038/nprot.2010.184. Epub 2011 Feb 17.
5
Embryonic origin of the adult hematopoietic system: advances and questions.
Development. 2011 Mar;138(6):1017-31. doi: 10.1242/dev.040998.
6
A mesoderm-derived precursor for mesenchymal stem and endothelial cells.
Cell Stem Cell. 2010 Dec 3;7(6):718-29. doi: 10.1016/j.stem.2010.11.011.
7
Networking erythropoiesis.
J Exp Med. 2010 Nov 22;207(12):2537-41. doi: 10.1084/jem.20102260.
9
Hematopoietic development in the zebrafish.
Int J Dev Biol. 2010;54(6-7):1127-37. doi: 10.1387/ijdb.093042ep.
10
Transcription factor interplay during Drosophila haematopoiesis.
Int J Dev Biol. 2010;54(6-7):1107-15. doi: 10.1387/ijdb.093054lw.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验