Division of Epidemiology, University of California, Berkeley, USA.
Neurology. 2012 May 1;78(18):1376-82. doi: 10.1212/WNL.0b013e318253d5b3. Epub 2012 Apr 4.
To investigate predictors of missing data in a longitudinal study of Alzheimer disease (AD).
The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a clinic-based, multicenter, longitudinal study with blood, CSF, PET, and MRI scans repeatedly measured in 229 participants with normal cognition (NC), 397 with mild cognitive impairment (MCI), and 193 with mild AD during 2005-2007. We used univariate and multivariable logistic regression models to examine the associations between baseline demographic/clinical features and loss of biomarker follow-ups in ADNI.
CSF studies tended to recruit and retain patients with MCI with more AD-like features, including lower levels of baseline CSF Aβ(42). Depression was the major predictor for MCI dropouts, while family history of AD kept more patients with AD enrolled in PET and MRI studies. Poor cognitive performance was associated with loss of follow-up in most biomarker studies, even among NC participants. The presence of vascular risk factors seemed more critical than cognitive function for predicting dropouts in AD.
The missing data are not missing completely at random in ADNI and likely conditional on certain features in addition to cognitive function. Missing data predictors vary across biomarkers and even MCI and AD groups do not share the same missing data pattern. Understanding the missing data structure may help in the design of future longitudinal studies and clinical trials in AD.
探讨阿尔茨海默病(AD)纵向研究中缺失数据的预测因素。
阿尔茨海默病神经影像学倡议(ADNI)是一项基于临床的、多中心的纵向研究,在 2005-2007 年间,对 229 名认知正常(NC)、397 名轻度认知障碍(MCI)和 193 名轻度 AD 患者进行了血液、CSF、PET 和 MRI 扫描的重复测量。我们使用单变量和多变量逻辑回归模型来研究基线人口统计学/临床特征与 ADNI 中生物标志物随访丢失之间的关系。
CSF 研究倾向于招募和保留具有更多 AD 样特征的 MCI 患者,包括基线 CSF Aβ(42)水平较低。抑郁是 MCI 患者脱落的主要预测因素,而 AD 的家族史使更多的 AD 患者参加了 PET 和 MRI 研究。认知表现较差与大多数生物标志物研究中的随访丢失相关,甚至在 NC 参与者中也是如此。血管危险因素的存在似乎比认知功能对 AD 患者的脱落更具预测性。
ADNI 中的缺失数据不是完全随机缺失的,除了认知功能外,还可能与某些特征有关。缺失数据的预测因素因生物标志物而异,甚至 MCI 和 AD 组也没有相同的缺失数据模式。了解缺失数据结构可能有助于 AD 的未来纵向研究和临床试验的设计。