Suppr超能文献

构建用于合成一碳代谢的高效碳连接酶

Engineering a Highly Efficient Carboligase for Synthetic One-Carbon Metabolism.

作者信息

Nattermann Maren, Burgener Simon, Pfister Pascal, Chou Alexander, Schulz Luca, Lee Seung Hwan, Paczia Nicole, Zarzycki Jan, Gonzalez Ramon, Erb Tobias J

机构信息

Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.

Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, United States.

出版信息

ACS Catal. 2021 May 7;11(9):5396-5404. doi: 10.1021/acscatal.1c01237. Epub 2021 Apr 20.

Abstract

One of the biggest challenges to realize a circular carbon economy is the synthesis of complex carbon compounds from one-carbon (C1) building blocks. Since the natural solution space of C1-C1 condensations is limited to highly complex enzymes, the development of more simple and robust biocatalysts may facilitate the engineering of C1 assimilation routes. Thiamine diphosphate-dependent enzymes harbor great potential for this task, due to their ability to create C-C bonds. Here, we employed structure-guided iterative saturation mutagenesis to convert oxalyl-CoA decarboxylase (OXC) from into a glycolyl-CoA synthase (GCS) that allows for the direct condensation of the two C1 units formyl-CoA and formaldehyde. A quadruple variant MeOXC4 showed a 100 000-fold switch between OXC and GCS activities, a 200-fold increase in the GCS activity compared to the wild type, and formaldehyde affinity that is comparable to natural formaldehyde-converting enzymes. Notably, MeOCX4 outcompetes all other natural and engineered enzymes for C1-C1 condensations by more than 40-fold in catalytic efficiency and is highly soluble in . In addition to the increased GCS activity, MeOXC4 showed up to 300-fold higher activity than the wild type toward a broad range of carbonyl acceptor substrates. When applied in vivo, MeOXC4 enables the production of glycolate from formaldehyde, overcoming the current bottleneck of C1-C1 condensation in whole-cell bioconversions and paving the way toward synthetic C1 assimilation routes in vivo.

摘要

实现循环碳经济面临的最大挑战之一是由单碳(C1)结构单元合成复杂的碳化合物。由于C1-C1缩合反应的天然解决方案空间局限于高度复杂的酶,开发更简单、更强大的生物催化剂可能有助于构建C1同化途径。依赖硫胺素二磷酸的酶因其形成碳-碳键的能力而在这项任务中具有巨大潜力。在此,我们采用结构导向的迭代饱和诱变技术,将草酸辅酶A脱羧酶(OXC)转化为乙醇酸辅酶A合酶(GCS),该酶可使两个C1单元甲酰辅酶A和甲醛直接缩合。一个四重变体MeOXC4在OXC和GCS活性之间表现出100000倍的转换,与野生型相比,GCS活性增加了200倍,并且其对甲醛的亲和力与天然甲醛转化酶相当。值得注意的是,MeOCX4在C1-C1缩合反应中的催化效率比所有其他天然和工程酶高出40多倍,并且在[此处缺失溶剂信息]中具有高度溶解性。除了增加的GCS活性外,MeOXC4对广泛的羰基受体底物的活性比野生型高出300倍。在体内应用时,MeOXC4能够由甲醛生产乙醇酸,克服了全细胞生物转化中C1-C1缩合反应的当前瓶颈,并为体内合成C1同化途径铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd75/8411744/7b4d6eb1affe/cs1c01237_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验