Suppr超能文献

用于在自由活动动物中对多个神经元进行时空光控制的二极管探头。

Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals.

机构信息

Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.

出版信息

J Neurophysiol. 2012 Jul;108(1):349-63. doi: 10.1152/jn.00153.2012. Epub 2012 Apr 11.

Abstract

Neuronal control with high temporal precision is possible with optogenetics, yet currently available methods do not enable to control independently multiple locations in the brains of freely moving animals. Here, we describe a diode-probe system that allows real-time and location-specific control of neuronal activity at multiple sites. Manipulation of neuronal activity in arbitrary spatiotemporal patterns is achieved by means of an optoelectronic array, manufactured by attaching multiple diode-fiber assemblies to high-density silicon probes or wire tetrodes and implanted into the brains of animals that are expressing light-responsive opsins. Each diode can be controlled separately, allowing localized light stimulation of neuronal activators and silencers in any temporal configuration and concurrent recording of the stimulated neurons. Because the only connections to the animals are via a highly flexible wire cable, unimpeded behavior is allowed for circuit monitoring and multisite perturbations in the intact brain. The capacity of the system to generate unique neural activity patterns facilitates multisite manipulation of neural circuits in a closed-loop manner and opens the door to addressing novel questions.

摘要

利用光遗传学可以实现具有高精度时间分辨率的神经元控制,但目前可用的方法无法在自由活动动物的大脑中独立控制多个位置。在这里,我们描述了一种二极管探头系统,该系统允许在多个位置实时且特异性地控制神经元活性。通过光电阵列实现对神经元活动的任意时空模式的操纵,该光电阵列是通过将多个二极管-光纤组件附着到高密度硅探针或金属丝四极管上并植入表达光响应视蛋白的动物大脑中而制成的。每个二极管都可以单独控制,从而可以以任何时间配置对神经元激活物和抑制剂进行局部光刺激,并同时记录受刺激的神经元。由于与动物的唯一连接是通过一条高度灵活的电线电缆,因此允许在不影响行为的情况下对电路进行监测,并在完整的大脑中进行多部位干扰。该系统生成独特的神经活动模式的能力,促进了以闭环方式对神经回路进行多位点操作,并为解决新问题开辟了道路。

相似文献

1
Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals.
J Neurophysiol. 2012 Jul;108(1):349-63. doi: 10.1152/jn.00153.2012. Epub 2012 Apr 11.
3
A comprehensive concept of optogenetics.
Prog Brain Res. 2012;196:1-28. doi: 10.1016/B978-0-444-59426-6.00001-X.
4
One-step optogenetics with multifunctional flexible polymer fibers.
Nat Neurosci. 2017 Apr;20(4):612-619. doi: 10.1038/nn.4510. Epub 2017 Feb 20.
5
A neurophotonic device for stimulation and recording of neural microcircuits.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2935-8. doi: 10.1109/IEMBS.2010.5626296.
6
Temporally precise control of single-neuron spiking by juxtacellular nanostimulation.
J Neurophysiol. 2017 Mar 1;117(3):1363-1378. doi: 10.1152/jn.00479.2016. Epub 2017 Jan 11.
7
Thalamic state control of cortical paired-pulse dynamics.
J Neurophysiol. 2017 Jan 1;117(1):163-177. doi: 10.1152/jn.00415.2016. Epub 2016 Oct 19.
9
Multi-site optical excitation using ChR2 and micro-LED array.
J Neural Eng. 2010 Feb;7(1):16004. doi: 10.1088/1741-2560/7/1/016004. Epub 2010 Jan 14.
10
Fully integrated silicon probes for high-density recording of neural activity.
Nature. 2017 Nov 8;551(7679):232-236. doi: 10.1038/nature24636.

引用本文的文献

2
Converging assemblies: A putative building block for brain function and for interfacing with the brain.
Neural Regen Res. 2026 Mar 1;21(3):1124-1125. doi: 10.4103/NRR.NRR-D-24-01244. Epub 2025 Feb 24.
3
Neuropixels Opto: Combining high-resolution electrophysiology and optogenetics.
bioRxiv. 2025 Feb 21:2025.02.04.636286. doi: 10.1101/2025.02.04.636286.
4
Flexible electronic-photonic 3D integration from ultrathin polymer chiplets.
Npj Flex Electron. 2024;8. doi: 10.1038/s41528-024-00344-w. Epub 2024 Oct 1.
5
Laser micromachining of tapered optical fibers for spatially selective control of neural activity.
Microelectron Eng. 2018 May;192:88-95. doi: 10.1016/j.mee.2018.02.010.
6
The generation of a neuronal phase code for space.
Clin Transl Med. 2024 Nov;14(11):e70092. doi: 10.1002/ctm2.70092.
8
Plasticity of Response Properties of Mouse Visual Cortex Neurons Induced by Optogenetic Tetanization In Vivo.
Curr Issues Mol Biol. 2024 Apr 10;46(4):3294-3312. doi: 10.3390/cimb46040206.

本文引用的文献

1
Optetrode: a multichannel readout for optogenetic control in freely moving mice.
Nat Neurosci. 2011 Dec 4;15(1):163-70. doi: 10.1038/nn.2992.
4
A wirelessly powered and controlled device for optical neural control of freely-behaving animals.
J Neural Eng. 2011 Aug;8(4):046021. doi: 10.1088/1741-2560/8/4/046021. Epub 2011 Jun 23.
5
The development and application of optogenetics.
Annu Rev Neurosci. 2011;34:389-412. doi: 10.1146/annurev-neuro-061010-113817.
7
A microprobe for parallel optical and electrical recordings from single neurons in vivo.
Nat Methods. 2011 Apr;8(4):319-25. doi: 10.1038/nmeth.1572. Epub 2011 Feb 13.
8
An optogenetic toolbox designed for primates.
Nat Neurosci. 2011 Mar;14(3):387-97. doi: 10.1038/nn.2749. Epub 2011 Jan 30.
9
Optogenetics.
Nat Methods. 2011 Jan;8(1):26-9. doi: 10.1038/nmeth.f.324. Epub 2010 Dec 20.
10
Multiwaveguide implantable probe for light delivery to sets of distributed brain targets.
Opt Lett. 2010 Dec 15;35(24):4133-5. doi: 10.1364/OL.35.004133.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验