Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Magn Reson Imaging. 2012 Jun;30(5):620-6. doi: 10.1016/j.mri.2012.02.004. Epub 2012 Apr 10.
A recently developed partially separable functions (PSF) model can be used to generate high-resolution dynamic magnetic resonance imaging (MRI). However, this method could not robustly reconstruct high-quality MR images because the estimation of the PSF parameters is often interfered by the noise of the sampled MR data. To improve the robustness of MRI reconstruction using the PSF model, we proposed a new algorithm to estimate the PSF parameters by jointly using robust principal component analysis and modified truncated singular value decomposition regularization methods, instead of using the least square fitting method in the original PSF model. The experiment results of in vivo cardiac MRI demonstrated that the proposed algorithm can robustly reconstruct dynamic MR images with higher signal-to-noise ratio and clearer anatomical structures in comparison with the previous PSF model.
最近开发的部分可分离函数 (PSF) 模型可用于生成高分辨率动态磁共振成像 (MRI)。然而,由于 PSF 参数的估计常常受到采样 MRI 数据噪声的干扰,这种方法无法稳健地重建高质量的 MRI 图像。为了提高 PSF 模型在 MRI 重建中的稳健性,我们提出了一种新的算法,通过联合使用稳健主成分分析和修正截断奇异值分解正则化方法来估计 PSF 参数,而不是在原始 PSF 模型中使用最小二乘拟合方法。活体心脏 MRI 的实验结果表明,与之前的 PSF 模型相比,所提出的算法可以稳健地重建具有更高信噪比和更清晰解剖结构的动态 MRI 图像。