Suppr超能文献

一种用于确定基于序列的核小体定位预测因子的广义隐马尔可夫模型。

A generalized hidden Markov model for determining sequence-based predictors of nucleosome positioning.

作者信息

Moser Carlee, Gupta Mayetri

机构信息

Boston University.

出版信息

Stat Appl Genet Mol Biol. 2012 Jan 6;11(2):/j/sagmb.2012.11.issue-2/1544-6115.1707/1544-6115.1707.xml. doi: 10.2202/1544-6115.1707.

Abstract

Chromatin structure, in terms of positioning of nucleosomes and nucleosome-free regions in the DNA, has been found to have an immense impact on various cell functions and processes, ranging from transcriptional regulation to growth and development. In spite of numerous experimental and computational approaches being developed in the past few years to determine the intrinsic relationship between chromatin structure (nucleosome positioning) and DNA sequence features, there is yet no universally accurate approach to predict nucleosome positioning from the underlying DNA sequence alone. We here propose an alternative approach to predicting nucleosome positioning from sequence, making use of characteristic sequence differences, and inherent dependencies in overlapping sequence features. Our nucleosomal positioning prediction algorithm, based on the idea of generalized hierarchical hidden Markov models (HGHMMs), was used to predict nucleosomal state based on the DNA sequence in yeast chromosome III, and compared with two other existing methods. The HGHMM method performed favorably among the three models in terms of specificity and sensitivity, and provided estimates that were largely consistent with predictions from the method of Yuan and Liu (2008). However, all the methods still give higher than desirable misclassification rates, indicating that sequence-based features may provide only limited information towards understanding positioning of nucleosomes. The method is implemented in the open-source statistical software R, and is freely available from the authors' website.

摘要

就核小体在DNA中的定位以及无核小体区域而言,染色质结构已被发现对各种细胞功能和过程有着巨大影响,从转录调控到生长发育皆是如此。尽管在过去几年中已开发出众多实验和计算方法来确定染色质结构(核小体定位)与DNA序列特征之间的内在关系,但目前仍没有一种普遍准确的方法能够仅从潜在的DNA序列预测核小体定位。我们在此提出一种从序列预测核小体定位的替代方法,利用特征序列差异以及重叠序列特征中的内在依赖性。我们基于广义分层隐马尔可夫模型(HGHMMs)概念的核小体定位预测算法,用于根据酵母三号染色体中的DNA序列预测核小体状态,并与其他两种现有方法进行比较。在特异性和敏感性方面,HGHMM方法在这三种模型中表现良好,并且提供的估计结果与Yuan和Liu(2008年)方法的预测结果基本一致。然而,所有这些方法的错误分类率仍然高于预期,这表明基于序列的特征在理解核小体定位方面可能仅提供有限的信息。该方法在开源统计软件R中实现,可从作者网站免费获取。

相似文献

1
A generalized hidden Markov model for determining sequence-based predictors of nucleosome positioning.一种用于确定基于序列的核小体定位预测因子的广义隐马尔可夫模型。
Stat Appl Genet Mol Biol. 2012 Jan 6;11(2):/j/sagmb.2012.11.issue-2/1544-6115.1707/1544-6115.1707.xml. doi: 10.2202/1544-6115.1707.

本文引用的文献

1
Variety of genomic DNA patterns for nucleosome positioning.核小体定位的基因组 DNA 模式多样性。
Genome Res. 2011 Nov;21(11):1863-71. doi: 10.1101/gr.116228.110. Epub 2011 Jul 12.
2
Thirty years of multiple sequence codes.三十年的多序列码。
Genomics Proteomics Bioinformatics. 2011 Apr;9(1-2):1-6. doi: 10.1016/S1672-0229(11)60001-6.
3
Genomic sequence is highly predictive of local nucleosome depletion.基因组序列能高度预测局部核小体缺失情况。
PLoS Comput Biol. 2008 Jan;4(1):e13. doi: 10.1371/journal.pcbi.0040013. Epub 2007 Dec 13.
4
A high-resolution atlas of nucleosome occupancy in yeast.酵母核小体占据情况的高分辨率图谱。
Nat Genet. 2007 Oct;39(10):1235-44. doi: 10.1038/ng2117. Epub 2007 Sep 16.
7
Predictive modeling of genome-wide mRNA expression: from modules to molecules.全基因组mRNA表达的预测建模:从模块到分子
Annu Rev Biophys Biomol Struct. 2007;36:329-47. doi: 10.1146/annurev.biophys.36.040306.132725.
9
New evidence that DNA encodes its packaging.DNA编码其包装的新证据。
Nat Genet. 2006 Oct;38(10):1104-5. doi: 10.1038/ng1006-1104.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验