Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, Ireland.
Nano Lett. 2012 May 9;12(5):2222-7. doi: 10.1021/nl2040817. Epub 2012 Apr 27.
Energy bandgaps are observed to increase with decreasing diameter due to quantum confinement in quasi-one-dimensional semiconductor nanostructures or nanowires. A similar effect is observed in semimetal nanowires for sufficiently small wire diameters: A bandgap is induced, and the semimetal nanowire becomes a semiconductor. We demonstrate that on the length scale on which the semimetal-semiconductor transition occurs, this enables the use of bandgap engineering to form a field-effect transistor near atomic dimensions and eliminates the need for doping in the transistor's source, channel, or drain. By removing the requirement to supply free carriers by introducing dopant impurities, quantum confinement allows for a materials engineering to overcome the primary obstacle to fabricating sub-5 nm transistors, enabling aggressive scaling to near atomic limits.
由于准一维半导体纳米结构或纳米线中的量子限制,能隙被观察到随着直径的减小而增大。在足够小的线材直径下,在半金属纳米线中也观察到类似的效果:诱导能带隙,使半金属纳米线成为半导体。我们证明,在发生半金属-半导体转变的长度尺度上,这使得能够利用能带工程在原子尺寸附近形成场效应晶体管,并消除晶体管源极、沟道或漏极中掺杂的需要。通过引入掺杂杂质来去除提供自由载流子的要求,量子限制允许进行材料工程,从而克服制造小于 5nm 晶体管的主要障碍,实现向近原子极限的积极扩展。