Suppr超能文献

一种预测细胞群体对化疗药物和放射性药物混合物反应的方法:以柔红霉素、多柔比星和α粒子发射体(210)Po 验证。

A method to predict response of cell populations to cocktails of chemotherapeutics and radiopharmaceuticals: validation with daunomycin, doxorubicin, and the alpha particle emitter (210)Po.

机构信息

Division of Radiation Research, Department of Radiology, UMDNJ - New Jersey Medical School Cancer Center, Newark, NJ 07103, USA.

出版信息

Nucl Med Biol. 2012 Oct;39(7):954-61. doi: 10.1016/j.nucmedbio.2012.01.011. Epub 2012 Apr 14.

Abstract

UNLABELLED

There is considerable interest in the use of α-emitting radionuclides in radioimmunotherapy. However, the high toxicity of α-emitting radionuclides often does not permit administration of high activities for fear of normal tissue toxicity. Accordingly, targeting procedures need to be optimized for improved tumor control and minimized normal tissue toxicity. To guide design of effective cocktails of α-emitting radiopharmaceuticals and chemotherapy drugs, approaches that can predict biological response of a cell population on a cell-by-cell basis are needed.

METHODS

Cells were concomitantly treated with the α-particle emitting radiochemical (210)Po-citrate and daunomycin, or with (210)Po-citrate and doxorubicin. The responses of the treated cell populations were measured with a colony forming assay. The nonuniform cellular incorporation of the radiochemical and drugs was determined simultaneously on a cell-by-cell basis using flow cytometry. Monte Carlo methods were used to simulate cell survival on the basis of individual cell incorporation of each cytotoxic agent and validated by direct comparison with the experimental clonogenic cell survival.

RESULTS

Both daunomycin and doxorubicin enhanced the toxicity of the α-particles with a magnitude greater than expected based on single-agent toxicities. Cell survival obtained by Monte Carlo simulation was in good agreement with clonogenic cell survival for the combination treatments.

CONCLUSION

Flow cytometry assisted Monte Carlo simulations can be used to predict toxicity of cocktails of α-emitting radiopharmaceuticals and chemotherapy drugs in a manner that takes into account the effects of nonuniform distributions of agents within cell populations.

摘要

未加标签

在放射免疫治疗中使用α发射放射性核素有很大的兴趣。然而,α发射放射性核素的高毒性通常不允许高活性的给药,因为担心正常组织毒性。因此,需要优化靶向程序,以提高肿瘤控制和最小化正常组织毒性。为了指导α发射放射性药物和化疗药物的有效鸡尾酒的设计,需要有能够预测细胞群体生物学反应的方法,即基于单细胞的方法。

方法

细胞同时用α粒子发射放射性化学物质(210)Po-柠檬酸和柔红霉素,或用(210)Po-柠檬酸和阿霉素处理。用集落形成测定法测定处理的细胞群体的反应。用流式细胞术同时在单细胞基础上测定放射性化学物质和药物的非均匀细胞内掺入。蒙特卡罗方法用于根据每个细胞毒性剂的个体细胞掺入来模拟细胞存活,并通过与直接与实验克隆形成细胞存活进行比较来验证。

结果

柔红霉素和阿霉素都增强了α粒子的毒性,其强度大于基于单一药物毒性的预期。蒙特卡罗模拟获得的细胞存活与组合处理的集落形成细胞存活非常吻合。

结论

流式细胞术辅助的蒙特卡罗模拟可用于以考虑到细胞群体内药物非均匀分布的影响的方式预测α发射放射性药物和化疗药物鸡尾酒的毒性。

相似文献

5
Targeted alpha therapy: part I.靶向α治疗:第一部分。
Curr Radiopharm. 2011 Jul;4(3):176. doi: 10.2174/1874471011104030176.

引用本文的文献

6
Dosimetry for radiopharmaceutical therapy.放射性药物治疗的剂量学。
Semin Nucl Med. 2014 May;44(3):172-8. doi: 10.1053/j.semnuclmed.2014.03.007.

本文引用的文献

10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验