Suppr超能文献

儿童调节过程中睫状肌厚度的变化。

Changes in ciliary muscle thickness during accommodation in children.

作者信息

Lewis Helen Annie, Kao Chiu-Yen, Sinnott Loraine T, Bailey Melissa D

机构信息

College of Optometry, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

Optom Vis Sci. 2012 May;89(5):727-37. doi: 10.1097/OPX.0b013e318253de7e.

Abstract

PURPOSE

To investigate the morphology of the ciliary muscle during the act of accommodation in a population of children.

METHODS

Thirty children aged 6 to 12 years were enrolled. Accommodative response was measured through habitual correction. Height was measured as a control variable. Central axial length was measured with the IOLMaster. Four images of the temporal ciliary muscle were taken with the Visante Optical Coherence Tomographer at three different stimulus levels (0, 4, and 6 D) while accommodative response was monitored concurrently with the PowerRefractor. Accommodative response monitoring was time-matched to ciliary muscle image capture, and the mean was calculated for 5 s surrounding this time point. Four cycloplegic images of the temporal ciliary muscle were also taken. Ciliary muscle thickness measurements were made at the point of maximum thickness (CMTMAX) and at 1 mm (CMT1), 2 mm (CMT2) and 3 mm (CMT3) posterior to the sclera spur.

RESULTS

Increasing accommodative response was correlated with increases in the thickness of CMTMAX (p = <0.001) and CMT1 (p = <0.001) and decreases in the thickness of CMT3 (p = <0.001). Thicker values of CMTMAX under cycloplegic conditions were significantly correlated with values of CMTMAX (p = <0.001) and CMT1 (p = 0.001) while accommodating and approached significance in modeling CMT3 (p = 0.06). Mean axial length was correlated with the amount of thinning at CMT3 with accommodation (p = 0.002). Axial length was not significantly correlated with thickness values at CMTMAX (p = 0.7) or CMT1 (p = 0.6).

CONCLUSIONS

In a manner similar to previous adult studies, ciliary muscle thickness at CMTMAX and CMT1 increased with accommodation and CMT3 thinned with accommodation. Further investigation is necessary to determine whether CMT2 is a "fulcrum" point along the length of the ciliary muscle where the net change with accommodation is always zero or whether that point varies across subjects or with varying levels of accommodative effort.

摘要

目的

研究儿童群体在调节过程中睫状肌的形态。

方法

招募30名6至12岁的儿童。通过习惯性矫正测量调节反应。测量身高作为对照变量。使用IOLMaster测量眼轴长度。在三种不同刺激水平(0、4和6 D)下,使用Visante光学相干断层扫描仪拍摄颞侧睫状肌的四张图像,同时使用PowerRefractor监测调节反应。调节反应监测与睫状肌图像采集时间匹配,并计算该时间点前后5秒的平均值。还拍摄了颞侧睫状肌的四张睫状肌麻痹图像。在巩膜突后最大厚度点(CMTMAX)以及1毫米(CMT1)、2毫米(CMT2)和3毫米(CMT3)处测量睫状肌厚度。

结果

调节反应增加与CMTMAX厚度增加(p = <0.001)和CMT1厚度增加(p = <0.001)以及CMT3厚度减少(p = <0.001)相关。睫状肌麻痹条件下较厚的CMTMAX值与调节时的CMTMAX值(p = <0.001)和CMT1值(p = 0.001)显著相关,在模拟CMT3时接近显著水平(p = 0.06)。平均眼轴长度与调节时CMT3的变薄量相关(p = 0.002)。眼轴长度与CMTMAX(p = 0.7)或CMT1(p = 0.6)的厚度值无显著相关性。

结论

与先前的成人研究类似,调节时CMTMAX和CMT1处的睫状肌厚度增加,CMT3变薄。有必要进一步研究CMT2是否是睫状肌长度上的一个“支点”点,调节时其净变化始终为零,或者该点是否因个体而异或因调节努力程度不同而变化。

相似文献

1
Changes in ciliary muscle thickness during accommodation in children.
Optom Vis Sci. 2012 May;89(5):727-37. doi: 10.1097/OPX.0b013e318253de7e.
2
Measuring changes in ciliary muscle thickness with accommodation in young adults.
Optom Vis Sci. 2012 May;89(5):719-26. doi: 10.1097/OPX.0b013e318252cadc.
3
Ciliary muscle thickness in anisometropia.
Optom Vis Sci. 2013 Nov;90(11):1312-20. doi: 10.1097/OPX.0000000000000070.
4
Region-specific relationships between refractive error and ciliary muscle thickness in children.
Invest Ophthalmol Vis Sci. 2013 Jul 12;54(7):4710-6. doi: 10.1167/iovs.13-11658.
5
Accommodative fluctuations, lens tension, and ciliary body thickness in children.
Optom Vis Sci. 2009 Jun;86(6):677-84. doi: 10.1097/OPX.0b013e3181a7b3ce.
6
Optic Coherence Tomography for Accommodation Control in Children with Hyperopic Anisometropia and Amblyopia.
Sovrem Tekhnologii Med. 2023;15(5):24-31. doi: 10.17691/stm2023.15.5.03. Epub 2023 Oct 30.
7
Ciliary muscle thickness in adults with Down syndrome.
Ophthalmic Physiol Opt. 2022 Jul;42(4):897-903. doi: 10.1111/opo.12974. Epub 2022 Mar 16.
8
Impact of accommodative insufficiency and accommodative/vergence therapy on ciliary muscle thickness in the eye.
Ophthalmic Physiol Opt. 2023 Sep;43(5):947-953. doi: 10.1111/opo.13155. Epub 2023 May 15.
9
Ciliary Muscle Dimension Changes With Accommodation Vary in Myopia and Emmetropia.
Invest Ophthalmol Vis Sci. 2022 Jun 1;63(6):24. doi: 10.1167/iovs.63.6.24.
10
Age-related changes in the anterior segment biometry during accommodation.
Invest Ophthalmol Vis Sci. 2015 Jun;56(6):3522-30. doi: 10.1167/iovs.15-16825.

引用本文的文献

1
Myopic-Net: Deep Learning-Based Direct Identification of Myopia Onset and Progression.
Transl Vis Sci Technol. 2025 Aug 1;14(8):38. doi: 10.1167/tvst.14.8.38.
2
Hyperopic Eyes Are Structurally More Dynamic Than Myopic Eyes During Accommodation: An In Vivo Investigation.
Invest Ophthalmol Vis Sci. 2025 Jun 2;66(6):51. doi: 10.1167/iovs.66.6.51.
3
Optic Coherence Tomography for Accommodation Control in Children with Hyperopic Anisometropia and Amblyopia.
Sovrem Tekhnologii Med. 2023;15(5):24-31. doi: 10.17691/stm2023.15.5.03. Epub 2023 Oct 30.
4
5
CMS-NET: deep learning algorithm to segment and quantify the ciliary muscle in swept-source optical coherence tomography images.
Ther Adv Chronic Dis. 2023 Mar 14;14:20406223231159616. doi: 10.1177/20406223231159616. eCollection 2023.
7
Ciliary Muscle Dimension Changes With Accommodation Vary in Myopia and Emmetropia.
Invest Ophthalmol Vis Sci. 2022 Jun 1;63(6):24. doi: 10.1167/iovs.63.6.24.
8
IMI Accommodation and Binocular Vision in Myopia Development and Progression.
Invest Ophthalmol Vis Sci. 2021 Apr 28;62(5):4. doi: 10.1167/iovs.62.5.4.
9
Comparative Study of the Effects of 1% Atropine on the Anterior Segment.
J Ophthalmol. 2020 Sep 28;2020:5125243. doi: 10.1155/2020/5125243. eCollection 2020.

本文引用的文献

1
Measuring changes in ciliary muscle thickness with accommodation in young adults.
Optom Vis Sci. 2012 May;89(5):719-26. doi: 10.1097/OPX.0b013e318252cadc.
2
The accommodative lag of the young hyperopic patient.
Invest Ophthalmol Vis Sci. 2012 Jan 17;53(1):143-9. doi: 10.1167/iovs.11-8174.
3
How should we measure the ciliary muscle?
Invest Ophthalmol Vis Sci. 2011 Mar 28;52(3):1817-8. doi: 10.1167/iovs.11-7313.
4
Semiautomatic extraction algorithm for images of the ciliary muscle.
Optom Vis Sci. 2011 Feb;88(2):275-89. doi: 10.1097/OPX.0b013e3182044b94.
5
The effect of ageing on in vivo human ciliary muscle morphology and contractility.
Invest Ophthalmol Vis Sci. 2011 Mar 28;52(3):1809-16. doi: 10.1167/iovs.10-6447.
6
In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia.
Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6882-9. doi: 10.1167/iovs.10-5787. Epub 2010 Jul 29.
8
Validation of optical coherence tomography-based crystalline lens thickness measurements in children.
Optom Vis Sci. 2009 Mar;86(3):181-7. doi: 10.1097/OPX.0b013e318198198d.
9
Evaluation of infant accommodation using retinoscopy and photoretinoscopy.
Optom Vis Sci. 2009 Mar;86(3):208-15. doi: 10.1097/OPX.0b013e3181960652.
10
Accommodation, pupil diameter and myopia.
Ophthalmic Physiol Opt. 2009 Jan;29(1):72-9. doi: 10.1111/j.1475-1313.2008.00611.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验