Suppr超能文献

在供氧不足的条件下,谷氨酸棒状杆菌中编码糖酵解酶的基因过表达增强了葡萄糖代谢和丙氨酸的生成。

Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions.

机构信息

Research Institute of Innovative Technology for the Earth (RITE), Kizugawadai, Kizugawa, Kyoto, Japan.

出版信息

Appl Environ Microbiol. 2012 Jun;78(12):4447-57. doi: 10.1128/AEM.07998-11. Epub 2012 Apr 13.

Abstract

We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159-165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD(+) ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses.

摘要

我们之前报道过,在缺氧条件下,过表达甘油醛-3-磷酸脱氢酶编码 gapA 的谷氨酸棒杆菌菌株ΔldhAΔppc+alaD+gapA 显示出明显改善的葡萄糖消耗和丙氨酸形成。在这项研究中,我们采用逐步过表达和总共四个编码糖酵解酶的基因(以下简称糖酵解基因)的染色体整合,以进一步展示谷氨酸棒杆菌在缺氧条件下葡萄糖代谢的连续改进。除了 gapA 之外,过表达丙酮酸激酶编码 pyk 和磷酸果糖激酶编码 pfk 使菌株 GLY2/pCRD500 与 GLY1/pCRD500 相比,葡萄糖消耗和丙氨酸形成的速率分别提高了 13%和 20%。随后在菌株 GLY3/pCRD500 中过表达葡萄糖-6-磷酸异构酶编码 gpi 进一步改善了其葡萄糖代谢。值得注意的是,每次过表达后,丙氨酸生产力和产率都有所提高。在 48 h 的孵育后,GLY3/pCRD500 以 91.8%的产率产生了 2,430 mM 的丙氨酸。这比野生型菌株的生产力提高了 6.4 倍。细胞内代谢物分析表明,gapA 的过表达导致甘油醛-3-磷酸脱氢酶上游代谢物的浓度降低,表明过表达解决了糖酵解的瓶颈。通过过表达糖酵解基因改变细胞外代谢物的比例导致细胞内 NADH/NAD(+) 比例降低,这对提高葡萄糖消耗也有重要作用。使用高拷贝数质粒增强丙氨酸脱氢酶活性进一步加速了整体丙氨酸生产力。增加糖酵解酶的活性是在停滞生长的生物过程中取得重大进展的有前途的方法。

相似文献

2
Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation.
Appl Microbiol Biotechnol. 2010 Jun;87(1):159-65. doi: 10.1007/s00253-010-2493-7. Epub 2010 Mar 9.
3
Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2015 Feb;99(3):1165-72. doi: 10.1007/s00253-014-6223-4. Epub 2014 Nov 26.
4
Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.
Appl Environ Microbiol. 2013 Feb;79(4):1250-7. doi: 10.1128/AEM.02806-12. Epub 2012 Dec 14.
9
Metabolic engineering of Corynebacterium glutamicum for hyperproduction of polymer-grade L- and D-lactic acid.
Appl Microbiol Biotechnol. 2019 Apr;103(8):3381-3391. doi: 10.1007/s00253-019-09737-8. Epub 2019 Mar 15.
10
Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation.
Appl Microbiol Biotechnol. 2015 Jul;99(13):5573-82. doi: 10.1007/s00253-015-6540-2. Epub 2015 Mar 27.

引用本文的文献

2
Activating a dormant metabolic pathway for high-temperature l-alanine production in .
iScience. 2023 Mar 15;26(4):106397. doi: 10.1016/j.isci.2023.106397. eCollection 2023 Apr 21.
3
Global Cellular Metabolic Rewiring Adapts Corynebacterium glutamicum to Efficient Nonnatural Xylose Utilization.
Appl Environ Microbiol. 2022 Dec 13;88(23):e0151822. doi: 10.1128/aem.01518-22. Epub 2022 Nov 16.
5
Physiological characteristics of Corynebacterium glutamicum as a cell factory under anaerobic conditions.
Appl Microbiol Biotechnol. 2021 Aug;105(16-17):6173-6181. doi: 10.1007/s00253-021-11474-w. Epub 2021 Aug 17.
9
Zero-growth bioprocesses: A challenge for microbial production strains and bioprocess engineering.
Eng Life Sci. 2016 Nov 11;17(1):27-35. doi: 10.1002/elsc.201600108. eCollection 2017 Jan.

本文引用的文献

1
Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions.
Appl Environ Microbiol. 2012 Feb;78(3):865-75. doi: 10.1128/AEM.07056-11. Epub 2011 Dec 2.
2
Corynebacterium glutamicum tailored for efficient isobutanol production.
Appl Environ Microbiol. 2011 May;77(10):3300-10. doi: 10.1128/AEM.02972-10. Epub 2011 Mar 25.
3
Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives.
Appl Microbiol Biotechnol. 2011 May;90(3):1051-61. doi: 10.1007/s00253-011-3144-3. Epub 2011 Feb 16.
4
Phosphoglycerate mutase is a highly efficient enzyme without flux control in Lactococcus lactis.
J Mol Microbiol Biotechnol. 2010;18(3):174-80. doi: 10.1159/000315458. Epub 2010 Jun 8.
5
Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation.
Appl Microbiol Biotechnol. 2010 Jun;87(1):159-65. doi: 10.1007/s00253-010-2493-7. Epub 2010 Mar 9.
6
Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector.
Appl Microbiol Biotechnol. 2009 Jan;81(6):1107-15. doi: 10.1007/s00253-008-1746-1. Epub 2008 Oct 21.
7
Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions.
Appl Microbiol Biotechnol. 2008 Dec;81(4):691-9. doi: 10.1007/s00253-008-1703-z. Epub 2008 Sep 23.
8
An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
Appl Microbiol Biotechnol. 2008 Dec;81(3):459-64. doi: 10.1007/s00253-008-1668-y. Epub 2008 Sep 6.
9
Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation.
Appl Environ Microbiol. 2008 Aug;74(16):5146-52. doi: 10.1128/AEM.00944-08. Epub 2008 Jun 20.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验