Research Institute of Innovative Technology for the Earth (RITE), Kizugawadai, Kizugawa, Kyoto, Japan.
Appl Environ Microbiol. 2012 Jun;78(12):4447-57. doi: 10.1128/AEM.07998-11. Epub 2012 Apr 13.
We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159-165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD(+) ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses.
我们之前报道过,在缺氧条件下,过表达甘油醛-3-磷酸脱氢酶编码 gapA 的谷氨酸棒杆菌菌株ΔldhAΔppc+alaD+gapA 显示出明显改善的葡萄糖消耗和丙氨酸形成。在这项研究中,我们采用逐步过表达和总共四个编码糖酵解酶的基因(以下简称糖酵解基因)的染色体整合,以进一步展示谷氨酸棒杆菌在缺氧条件下葡萄糖代谢的连续改进。除了 gapA 之外,过表达丙酮酸激酶编码 pyk 和磷酸果糖激酶编码 pfk 使菌株 GLY2/pCRD500 与 GLY1/pCRD500 相比,葡萄糖消耗和丙氨酸形成的速率分别提高了 13%和 20%。随后在菌株 GLY3/pCRD500 中过表达葡萄糖-6-磷酸异构酶编码 gpi 进一步改善了其葡萄糖代谢。值得注意的是,每次过表达后,丙氨酸生产力和产率都有所提高。在 48 h 的孵育后,GLY3/pCRD500 以 91.8%的产率产生了 2,430 mM 的丙氨酸。这比野生型菌株的生产力提高了 6.4 倍。细胞内代谢物分析表明,gapA 的过表达导致甘油醛-3-磷酸脱氢酶上游代谢物的浓度降低,表明过表达解决了糖酵解的瓶颈。通过过表达糖酵解基因改变细胞外代谢物的比例导致细胞内 NADH/NAD(+) 比例降低,这对提高葡萄糖消耗也有重要作用。使用高拷贝数质粒增强丙氨酸脱氢酶活性进一步加速了整体丙氨酸生产力。增加糖酵解酶的活性是在停滞生长的生物过程中取得重大进展的有前途的方法。