文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Entner-Doudoroff途径与Embden-Meyerhof-Parnas途径的共存增强了产乙醇谷氨酸棒杆菌对葡萄糖的消耗。

Coexistence of the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways enhances glucose consumption of ethanol-producing Corynebacterium glutamicum.

作者信息

Jojima Toru, Igari Takafumi, Noburyu Ryoji, Watanabe Akira, Suda Masako, Inui Masayuki

机构信息

Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.

Faculty of Agriculture, Department of Environmental Management, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan.

出版信息

Biotechnol Biofuels. 2021 Feb 16;14(1):45. doi: 10.1186/s13068-021-01876-3.


DOI:10.1186/s13068-021-01876-3
PMID:33593398
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7888142/
Abstract

BACKGROUND: It is interesting to modify sugar metabolic pathways to improve the productivity of biocatalysts that convert sugars to value-added products. However, this attempt often fails due to the tight control of the sugar metabolic pathways. Recently, activation of the Entner-Doudoroff (ED) pathway in Escherichia coli has been shown to enhance glucose consumption, though the mechanism underlying this phenomenon is poorly understood. In the present study, we investigated the effect of a functional ED pathway in metabolically engineered Corynebacterium glutamicum that metabolizes glucose via the Embden-Meyerhof-Parnas (EMP) pathway to produce ethanol under oxygen deprivation. This study aims to provide further information on metabolic engineering strategies that allow the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways to coexist. RESULTS: Three genes (zwf, edd, and eda) encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis were expressed in a genetically modified strain, C. glutamicum CRZ2e, which produces pyruvate decarboxylase and alcohol dehydrogenase from Z. mobilis. A C-labeling experiment using [1-C] glucose indicated a distinctive C distribution of ethanol between the parental and the ED-introduced strains, which suggested an alteration of carbon flux as a consequence of ED pathway introduction. The ED-introduced strain, CRZ2e-ED, consumed glucose 1.5-fold faster than the parental strain. A pfkA deletion mutant of CRZ2e-ED (CRZ2e-EDΔpfkA) was also constructed to evaluate the effects of EMP pathway inactivation, which showed an almost identical rate of glucose consumption compared to that of the parental CRZ2e strain. The introduction of the ED pathway did not alter the intracellular NADH/NAD ratio, whereas it resulted in a slight increase in the ATP/ADP ratio. The recombinant strains with simultaneous overexpression of the genes for the EMP and ED pathways exhibited the highest ethanol productivity among all C. glutamicum strains ever constructed. CONCLUSIONS: The increased sugar consumption observed in ED-introduced strains was not a consequence of cofactor balance alterations, but rather the crucial coexistence of two active glycolytic pathways for enhanced glucose consumption. Coexistence of the ED and EMP pathways is a good strategy for improving biocatalyst productivity even when NADPH supply is not a limiting factor for fermentation.

摘要

背景:改造糖代谢途径以提高将糖转化为增值产品的生物催化剂的生产力是一件有趣的事情。然而,由于糖代谢途径受到严格调控,这种尝试往往会失败。最近,已证明在大肠杆菌中激活Entner-Doudoroff(ED)途径可增强葡萄糖消耗,尽管对这一现象背后的机制了解甚少。在本研究中,我们研究了功能性ED途径在代谢工程改造的谷氨酸棒杆菌中的作用,该菌株在缺氧条件下通过Embden-Meyerhof-Parnas(EMP)途径代谢葡萄糖以生产乙醇。本研究旨在提供更多关于使Entner-Doudoroff途径和Embden-Meyerhof-Parnas途径共存的代谢工程策略的信息。 结果:编码葡萄糖-6-磷酸脱氢酶、6-磷酸葡萄糖酸脱水酶和2-酮-3-脱氧-6-磷酸葡萄糖酸醛缩酶的三个基因(zwf、edd和eda)来自运动发酵单胞菌,在基因改造菌株谷氨酸棒杆菌CRZ2e中表达,该菌株产生来自运动发酵单胞菌的丙酮酸脱羧酶和乙醇脱氢酶。使用[1-C]葡萄糖进行的碳标记实验表明,亲本菌株和引入ED途径的菌株之间乙醇的碳分布不同,这表明引入ED途径导致了碳通量的改变。引入ED途径的菌株CRZ2e-ED消耗葡萄糖的速度比亲本菌株快1.5倍。还构建了CRZ2e-ED的pfkA缺失突变体(CRZ2e-EDΔpfkA)以评估EMP途径失活的影响,其葡萄糖消耗速率与亲本CRZ2e菌株几乎相同。ED途径的引入并未改变细胞内NADH/NAD比率,然而却导致ATP/ADP比率略有增加。在所有构建的谷氨酸棒杆菌菌株中,同时过表达EMP和ED途径基因的重组菌株表现出最高的乙醇生产力。 结论:在引入ED途径的菌株中观察到的糖消耗增加不是辅因子平衡改变的结果,而是两条活跃糖酵解途径共存以增强葡萄糖消耗的关键。即使NADPH供应不是发酵的限制因素,ED和EMP途径的共存也是提高生物催化剂生产力的良好策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1975/7888142/ea112d8e7b27/13068_2021_1876_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1975/7888142/291047ef4499/13068_2021_1876_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1975/7888142/7fcc72acb639/13068_2021_1876_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1975/7888142/4daf64872a36/13068_2021_1876_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1975/7888142/ea112d8e7b27/13068_2021_1876_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1975/7888142/291047ef4499/13068_2021_1876_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1975/7888142/7fcc72acb639/13068_2021_1876_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1975/7888142/4daf64872a36/13068_2021_1876_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1975/7888142/ea112d8e7b27/13068_2021_1876_Fig4_HTML.jpg

相似文献

[1]
Coexistence of the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways enhances glucose consumption of ethanol-producing Corynebacterium glutamicum.

Biotechnol Biofuels. 2021-2-16

[2]
Expression of Phosphofructokinase Is Not Sufficient to Enable Embden-Meyerhof-Parnas Glycolysis in ZM4.

Front Microbiol. 2019-9-27

[3]
Fructose metabolism in Chromohalobacter salexigens: interplay between the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways.

Microb Cell Fact. 2019-8-13

[4]
Co-production of hydrogen and ethanol from glucose in by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase () and overexpression of glucose-6-phosphate dehydrogenase () and 6-phosphogluconate dehydrogenase ().

Biotechnol Biofuels. 2017-3-29

[5]
Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli - from Embden-Meyerhof-Parnas pathway to pentose phosphate pathway.

Biotechnol J. 2016-2

[6]
The Entner-Doudoroff Pathway Is an Essential Metabolic Route for Methylotuvimicrobium buryatense 5GB1C.

Appl Environ Microbiol. 2021-1-15

[7]
Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways.

J Biol Chem. 2015-10-23

[8]
The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress.

Environ Microbiol. 2013-1-10

[9]
Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.

Microb Cell Fact. 2015-8-12

[10]
Impact of expression of EMP enzymes on glucose metabolism in Zymomonas mobilis.

Appl Biochem Biotechnol. 2013-4-24

引用本文的文献

[1]
Metabolic profiling and genetic tool development in the mucosal bacterium Selenomonas sputigena.

Genes Genomics. 2025-8-20

[2]
Tailoring Corynebacterium glutamicum for Sustainable Biomanufacturing: From Traditional to Cutting-Edge Technologies.

Mol Biotechnol. 2025-6-10

[3]
Deep Isolated Aquifer Brines Harbor Atypical Halophilic Microbial Communities in Quebec, Canada.

Genes (Basel). 2023-7-26

[4]
Construct a synthetic Entner-Doudoroff pathway in Bacillus licheniformis for enhancing lichenysin production.

World J Microbiol Biotechnol. 2023-4-24

[5]
Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis.

Front Bioeng Biotechnol. 2022-4-13

[6]
Physiological characteristics of Corynebacterium glutamicum as a cell factory under anaerobic conditions.

Appl Microbiol Biotechnol. 2021-8

本文引用的文献

[1]
Metabolic engineering of mevalonate-producing Escherichia coli strains based on thermodynamic analysis.

Metab Eng. 2018-2-27

[2]
Rational design of a synthetic Entner-Doudoroff pathway for enhancing glucose transformation to isobutanol in Escherichia coli.

J Ind Microbiol Biotechnol. 2018-1-30

[3]
Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with C-metabolic flux analysis.

Biotechnol Bioeng. 2017-12

[4]
Cell Factory Engineering.

Cell Syst. 2017-3-22

[5]
Enhanced Glucose Consumption and Organic Acid Production by Engineered Corynebacterium glutamicum Based on Analysis of a pfkB1 Deletion Mutant.

Appl Environ Microbiol. 2017-1-17

[6]
Engineering the glycolytic pathway: A potential approach for improvement of biocatalyst performance.

Bioengineered. 2015

[7]
Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation.

Appl Microbiol Biotechnol. 2015-6

[8]
Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation.

Appl Microbiol Biotechnol. 2015-7

[9]
Nonstatistical 13C distribution during carbon transfer from glucose to ethanol during fermentation is determined by the catabolic pathway exploited.

J Biol Chem. 2015-2-13

[10]
Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.

Appl Microbiol Biotechnol. 2014-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索