Suppr超能文献

电子显微镜图像中线粒体的计算机检测和分割。

Computerized detection and segmentation of mitochondria on electron microscope images.

机构信息

Health Informatics Department, Informatics Institute, Middle East Technical University, Ankara 06800, Turkey.

出版信息

J Microsc. 2012 Jun;246(3):248-65. doi: 10.1111/j.1365-2818.2012.03614.x. Epub 2012 Apr 17.

Abstract

Mitochondrial function plays an important role in the regulation of cellular life and death, including disease states. Disturbance in mitochondrial function and distribution can be accompanied by significant morphological alterations. Electron microscopy tomography (EMT) is a powerful technique to study the 3D structure of mitochondria, but the automatic detection and segmentation of mitochondria in EMT volumes has been challenging due to the presence of subcellular structures and imaging artifacts. Therefore, the interpretation, measurement and analysis of mitochondrial distribution and features have been time consuming, and development of specialized software tools is very important for high-throughput analyses needed to expedite the myriad studies on cellular events. Typically, mitochondrial EMT volumes are segmented manually using special software tools. Automatic contour extraction on large images with multiple mitochondria and many other subcellular structures is still an unaddressed problem. The purpose of this work is to develop computer algorithms to detect and segment both fully and partially seen mitochondria on electron microscopy images. The detection method relies on mitochondria's approximately elliptical shape and double membrane boundary. Initial detection results are first refined using active contours. Then, our seed point selection method automatically selects reliable seed points along the contour, and segmentation is finalized by automatically incorporating a live-wire graph search algorithm between these seed points. In our evaluations on four images containing multiple mitochondria, 52 ellipses are detected among which 42 are true and 10 are false detections. After false ellipses are eliminated manually, 14 out of 15 fully seen mitochondria and 4 out of 7 partially seen mitochondria are successfully detected. When compared with the segmentation of a trained reader, 91% Dice similarity coefficient was achieved with an average 4.9 nm boundary error.

摘要

线粒体功能在细胞生死的调节中起着重要作用,包括疾病状态。线粒体功能和分布的紊乱可能伴随着显著的形态改变。电子显微镜断层扫描(EMT)是研究线粒体 3D 结构的有力技术,但由于亚细胞结构和成像伪影的存在,线粒体在 EMT 体中的自动检测和分割一直具有挑战性。因此,线粒体分布和特征的解释、测量和分析一直很耗时,开发专门的软件工具对于高通量分析非常重要,高通量分析对于加速众多细胞事件研究是必需的。通常,使用特殊的软件工具手动分割线粒体 EMT 体。在具有多个线粒体和许多其他亚细胞结构的大图像上进行自动轮廓提取仍然是一个未解决的问题。这项工作的目的是开发计算机算法来检测和分割电子显微镜图像上的完全和部分可见的线粒体。检测方法依赖于线粒体大致呈椭圆形和双层膜边界。初始检测结果首先使用活动轮廓进行细化。然后,我们的种子点选择方法自动沿着轮廓选择可靠的种子点,并通过在这些种子点之间自动结合活体线图搜索算法来完成分割。在包含多个线粒体的四张图像上的评估中,在其中检测到 52 个椭圆,其中 42 个是真的,10 个是假的。手动消除假椭圆后,成功检测到 14 个完全可见的线粒体和 4 个部分可见的线粒体。与训练有素的读者的分割相比,实现了 91%的 Dice 相似系数,平均边界误差为 4.9nm。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验