Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):7019-24. doi: 10.1073/pnas.1120181109. Epub 2012 Apr 16.
RNase E plays an essential role in RNA processing and decay and tethers to the cytoplasmic membrane in Escherichia coli; however, the function of this membrane-protein interaction has remained unclear. Here, we establish a mechanistic role for the RNase E-membrane interaction. The reconstituted highly conserved N-terminal fragment of RNase E (NRne, residues 1-499) binds specifically to anionic phospholipids through electrostatic interactions. The membrane-binding specificity of NRne was confirmed using circular dichroism difference spectroscopy; the dissociation constant (K(d)) for NRne binding to anionic liposomes was 298 nM. E. coli RNase G and RNase E/G homologs from phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were found to be membrane-binding proteins. Electrostatic potentials of NRne and its homologs were found to be conserved, highly positive, and spread over a large surface area encompassing four putative membrane-binding regions identified in the "large" domain (amino acids 1-400, consisting of the RNase H, S1, 5'-sensor, and DNase I subdomains) of E. coli NRne. In vitro cleavage assay using liposome-free and liposome-bound NRne and RNA substrates BR13 and GGG-RNAI showed that NRne membrane binding altered its enzymatic activity. Circular dichroism spectroscopy showed no obvious thermotropic structural changes in membrane-bound NRne between 10 and 60 °C, and membrane-bound NRne retained its normal cleavage activity after cooling. Thus, NRne membrane binding induced changes in secondary protein structure and enzymatic activation by stabilizing the protein-folding state and increasing its binding affinity for its substrate. Our results demonstrate that RNase E-membrane interaction enhances the rate of RNA processing and decay.
RNase E 在 RNA 加工和降解中发挥着重要作用,并在大肠杆菌中与细胞质膜结合;然而,这种膜蛋白相互作用的功能仍不清楚。在这里,我们建立了 RNase E-膜相互作用的机制作用。RNase E 的高度保守的 N 端片段(NRne,残基 1-499)通过静电相互作用特异性结合阴离子磷脂。通过圆二色性差异光谱证实了 NRne 的膜结合特异性;NRne 与阴离子脂质体的解离常数(K(d))为 298 nM。从系统发育上遥远的 Aquifex aeolicus、Haemophilus influenzae Rd 和 Synechocystis sp. 中分离出的 RNase G 和 RNase E/G 同源物被发现是膜结合蛋白。发现 NRne 及其同源物的静电势保守,高度正,分布在一个大的表面区域上,该区域包含在大肠杆菌 NRne 的“大”结构域(由 RNase H、S1、5'-传感器和 DNase I 亚结构域组成的氨基酸 1-400)中鉴定的四个潜在的膜结合区域。使用无脂质体和脂质体结合的 NRne 和 RNA 底物 BR13 和 GGG-RNAI 的体外切割实验表明,NRne 膜结合改变了其酶活性。圆二色性光谱显示,在 10 至 60°C 之间,无脂质体结合的 NRne 没有明显的热致结构变化,冷却后膜结合的 NRne 保留其正常的切割活性。因此,NRne 膜结合通过稳定蛋白质折叠状态和增加其与底物的结合亲和力来诱导二级蛋白质结构和酶激活的变化。我们的结果表明,RNase E-膜相互作用增强了 RNA 加工和降解的速度。