Shin Eunkyoung, Go Hayoung, Yeom Ji-Hyun, Won Miae, Bae Jeehyeon, Han Seung Hyun, Han Kook, Lee Younghoon, Ha Nam-Chul, Moore Christopher J, Sohlberg Björn, Cohen Stanley N, Lee Kangseok
Department of Life Science, Chung-Ang University, Seoul, Korea.
Genetics. 2008 Aug;179(4):1871-9. doi: 10.1534/genetics.108.088492. Epub 2008 Jul 27.
RNase E is an essential Escherichia coli endoribonuclease that plays a major role in the decay and processing of a large fraction of RNAs in the cell. To better understand the molecular mechanisms of RNase E action, we performed a genetic screen for amino acid substitutions in the catalytic domain of the protein (N-Rne) that knock down the ability of RNase E to support survival of E. coli. Comparative phylogenetic analysis of RNase E homologs shows that wild-type residues at these mutated positions are nearly invariably conserved. Cells conditionally expressing these N-Rne mutants in the absence of wild-type RNase E show a decrease in copy number of plasmids regulated by the RNase E substrate RNA I, and accumulation of 5S ribosomal RNA, M1 RNA, and tRNA(Asn) precursors, as has been found in Rne-depleted cells, suggesting that the inability of these mutants to support cellular growth results from loss of ribonucleolytic activity. Purified mutant proteins containing an amino acid substitution in the DNase I subdomain, which is spatially distant from the catalytic site posited from crystallographic studies, showed defective binding to an RNase E substrate, p23 RNA, but still retained RNA cleavage activity-implicating a previously unidentified structural motif in the DNase I subdomain in the binding of RNase E to targeted RNA molecules, demonstrating the role of the DNase I domain in RNase E activity.
核糖核酸酶E是一种必需的大肠杆菌内切核糖核酸酶,在细胞内大部分RNA的降解和加工过程中起主要作用。为了更好地理解核糖核酸酶E作用的分子机制,我们对该蛋白催化结构域(N-Rne)中的氨基酸取代进行了遗传筛选,这些取代降低了核糖核酸酶E支持大肠杆菌生存的能力。对核糖核酸酶E同源物的比较系统发育分析表明,这些突变位置的野生型残基几乎总是保守的。在没有野生型核糖核酸酶E的情况下条件性表达这些N-Rne突变体的细胞,其受核糖核酸酶E底物RNA I调控的质粒拷贝数减少,5S核糖体RNA、M1 RNA和tRNA(Asn)前体积累,这与在核糖核酸酶E缺失的细胞中发现的情况一致,表明这些突变体无法支持细胞生长是由于核糖核酸酶活性丧失所致。在脱氧核糖核酸酶I亚结构域中含有氨基酸取代的纯化突变蛋白,该亚结构域在空间上与晶体学研究确定的催化位点相距较远,显示出与核糖核酸酶E底物p23 RNA的结合存在缺陷,但仍保留RNA切割活性,这意味着脱氧核糖核酸酶I亚结构域中一个以前未鉴定的结构基序在核糖核酸酶E与靶向RNA分子的结合中起作用,证明了脱氧核糖核酸酶I结构域在核糖核酸酶E活性中的作用。