Gernet H
Clinique Ophtalmologique Universitaire de Créteil, Université de Paris XII.
Ophtalmologie. 1990 Jan-Feb;4(1):96-101.
In the literature, curves based on the geometrical-optical (theoretical) formula and on regression formulas are established to show the superiority of a certain formula type in respect to the other formula type. Such curves are not based on the data of an individual eye needing an IOL implant, they are (more or less) mean value curves for a certain corneal curvatures and for a certain assumed postoperative position of an IOL. Due to the fact that Sanders, Retzlaff and Kraff suppose a normal corneal curvature, her curve for the theoretical formula gives in short eyes unrealistic and much too high values. A "more realistic" curve for the theoretical formula would be situated in the region of the so called "second generation formulas". All these mean value curves are unable to demonstrate the precision of IOL power formulas for the individual case. For the individual case refractive balances allow precise statements concerning the formulas and the measuring accuracy of the used a-scan. Refractive balances are the comparison of all preoperative data of an eye with all postoperative data including postoperative ultrasound measurings of the pseudophakic eye. Our results of 197 IOL implantations with refractive balances show the clinical precision of the theoretical formula. This is still valid in cases having unusual optical data, for example having short or long eye axes, having unusual corneal curvature or unusual IOL main plain position.
在文献中,基于几何光学(理论)公式和回归公式建立了曲线,以显示某一公式类型相对于另一公式类型的优越性。这些曲线并非基于需要植入人工晶状体的个体眼睛的数据,它们或多或少是针对特定角膜曲率和人工晶状体特定假定术后位置的平均值曲线。由于桑德斯、雷茨拉夫和克拉夫假定角膜曲率正常,她的理论公式曲线在短眼中给出了不切实际且过高的值。理论公式的“更现实”曲线将位于所谓“第二代公式”的区域。所有这些平均值曲线都无法证明人工晶状体屈光度公式对个体情况的精确性。对于个体情况,屈光平衡能够对公式和所用A超测量的准确性做出精确说明。屈光平衡是将一只眼睛的所有术前数据与所有术后数据进行比较,包括人工晶状体眼的术后超声测量。我们对197例人工晶状体植入术进行屈光平衡的结果显示了理论公式的临床精确性。在具有异常光学数据的情况下,例如眼轴短或长、角膜曲率异常或人工晶状体主平面位置异常时,这一点仍然成立。