Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, California 92093-0625, United States.
J Am Chem Soc. 2012 May 16;134(19):8231-40. doi: 10.1021/ja302077d. Epub 2012 May 2.
Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of "hydrogen bond deficient" nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson-Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3'-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3'-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.
维持高转录保真度对于生命至关重要。对于所有真核生物而言,RNA 聚合酶 II(Pol II)负责从 DNA 模板合成信使 RNA。控制 Pol II 转录保真度的三个关键检查点步骤非常重要:核苷酸选择和掺入、RNA 转录延伸和校对。某些类型的 DNA 损伤会显著降低转录保真度。然而,Pol II 转录保真度各个检查点步骤的化学相互作用以及微妙的 DNA 碱基损伤如何导致转录保真度显著丧失的分子基础尚未完全了解。在这里,我们使用一系列“氢键缺陷”核苷类似物来剖析控制 Pol II 转录保真度的化学相互作用。我们发现,虽然模板 DNA 的 Watson-Crick 碱基对与进入的 NTP 之间的氢键对于有效掺入至关重要,但它们对于从匹配的 3'-RNA 末端进行有效转录延伸并不必需。形成氢键的模式不正确,延伸的保真度就会强烈依赖于对其的区分。我们表明,U:T 摆动碱基相互作用对于防止 Pol II 延伸这种不匹配至关重要。此外,氢键和碱基堆积都在控制 Pol II 校对活性中起着重要作用。在 3'-RNA 末端的强碱基堆积可以弥补氢键的缺失。最后,我们表明 Pol II 可以区分模板碱基非常细微的大小差异。目前的工作首次对控制 Pol II 转录保真度的静电和空间效应进行了系统评价。