Lavelle L, Fresco J R
Department of Molecular Biology, Princeton University, NJ 08544-1014, USA.
Nucleic Acids Res. 1995 Jul 25;23(14):2692-705. doi: 10.1093/nar/23.14.2692.
Near-UV difference spectral analysis of the triplex formed from d(C-T)6 and d(A-G)6.d(C-T)6 in neutral and acidic solution shows that the third strand dC residues are protonated at pH 7.0, far above their intrinsic pKa. Additional support for ion-dipole interactions between the third strand dC residues and the G.C target base pairs comes from reduced positive dependence of triplet stability on ionic strength below 0.9 M Na+, inverse dependence above 0.9 M Na+ and strong positive dependence on hydrogen ion concentration. Molecular modeling (AMBER) of C:G.C and C+:G.C base triplets with the third strand base bound in the Hoogsteen geometry shows that only the C+:G.C triplet is energetically feasible. van't Hoff analysis of the melting of the triplex and target duplex shows that between pH 5.0 and 8.5 in 0.15 M NaCl/0.005 M MgCl2 the enthalpy of melting (delta H degree obs) varies from 5.7 to 6.6 kcal.mol-1 for the duplex in a duplex mixture and from 7.3 to 9.7 kcal.mol-1 for third strand dissociation in the triplex mixture. We have extended the condensation-screening theory of Manning to pH-dependent third strand binding. In this development we explicitly include the H+ contribution to the electrostatic free energy and obtain [formula: see text]. The number of protons released in the dissociation of the third strand from the target duplex at pH 7.0, delta n2, is thereby calculated to be 5.5, in good agreement with approximately six third strand dc residues per mole of triplex. This work shows that when third strand binding requires protonated residues that would otherwise be neutral, triplex formation and dissociation are mediated by proton uptake and release, i.e., a proton switch. As a by-product of this study, we have found that at low pH the Watson-Crick duplex d(A-G)6.d(C-T)6 undergoes a transition to a parallel Hoogsteen duplex d(A-G)6.d(C(+)-T)6.
对由d(C-T)6与d(A-G)6·d(C-T)6在中性和酸性溶液中形成的三链体进行近紫外差光谱分析表明,在pH 7.0时,第三条链的dC残基发生质子化,远高于其固有pKa。第三条链dC残基与G·C靶碱基对之间离子-偶极相互作用的额外证据来自于:低于0.9 M Na+时,三联体稳定性对离子强度的正相关性降低;高于0.9 M Na+时,呈负相关性;以及对氢离子浓度呈强正相关性。对C:G·C和C+:G·C碱基三联体进行分子建模(AMBER),其中第三条链碱基以Hoogsteen几何构型结合,结果表明只有C+:G·C三联体在能量上是可行的。对三链体和靶双链体熔解的范特霍夫分析表明,在0.15 M NaCl/0.005 M MgCl2中,pH值在5.0至8.5之间时,双链体混合物中双链体的熔解焓(ΔH°obs)在5.7至6.6 kcal·mol-1之间变化,三链体混合物中第三条链解离的熔解焓在7.3至9.7 kcal·mol-1之间变化。我们将曼宁的凝聚筛选理论扩展到了pH依赖的第三条链结合。在这个拓展过程中,我们明确纳入了H+对静电自由能的贡献,并得到[公式:见原文]。由此计算出在pH 7.0时,第三条链从靶双链体解离过程中释放的质子数Δn2为5.5,这与每摩尔三链体中约六个第三条链dC残基非常吻合。这项工作表明,当第三条链结合需要原本呈中性的质子化残基时,三链体的形成和解离是由质子的摄取和释放介导的,即质子开关。作为这项研究的一个副产品,我们发现,在低pH值下,沃森-克里克双链体d(A-G)6·d(C-T)6会转变为平行的Hoogsteen双链体d(A-G)6·d(C(+)-T)6。