Suppr超能文献

人类耳蜗螺旋神经节神经元的形态分类和空间组织:对电刺激单纤维反应的影响。

Morphometric classification and spatial organization of spiral ganglion neurons in the human cochlea: consequences for single fiber response to electrical stimulation.

机构信息

Innsbruck Medical University, Department of Otorhinolaryngology, Laboratory for Inner Ear Biology, Anichstrasse 35, Innsbruck, Austria.

出版信息

Neuroscience. 2012 Jul 12;214(5):120-35. doi: 10.1016/j.neuroscience.2012.03.033. Epub 2012 Apr 16.

Abstract

The unique, unmyelinated perikarya of spiral ganglion cells (SGCs) in the human cochlea are often arranged in functional units covered by common satellite glial cells. This micro anatomical peculiarity presents a crucial barrier for an action potential (AP) travelling from the sensory receptors to the brain. Confocal microscopy was used to acquire systematically volumetric data on perikarya and corresponding nuclei in their full dimension along the cochlea of two individuals. Four populations of SGCs within the human inner ear of two different specimens were identified using agglomerative hierarchical clustering, contrary to the present distinction of two groups of SGCs. Furthermore, we found evidence of a spatial arrangement of perikarya and their accordant nuclei along the cochlea spiral. In this arrangement, the most uniform sizes of cell bodies are located in the middle turn, which represents the majority of phonational frequencies. Since single-cell recordings from other mammalians may not be representative to humans and human SGCs are not accessible for physiological measurements, computer simulation has been used to quantify the effect of varying soma size on single neuron response to electrical micro stimulation. Results show that temporal parameters of the spiking pattern are affected by the size of the cell body. Cathodic stimulation was found to induce stronger variations of spikes while also leading to the lowest thresholds and longest latencies. Therefore, anodic stimulation leads to a more uniform excitation profile among SGCs with different cell body size.

摘要

人类耳蜗螺旋神经节细胞(SGC)的独特、无髓鞘的胞体通常排列在由共同卫星胶质细胞覆盖的功能单元中。这种微观解剖学的特殊性对从感觉受体到大脑的动作电位(AP)的传递构成了关键障碍。共聚焦显微镜用于系统地获取两个人耳蜗中胞体及其相应核的体积数据,沿耳蜗的全长。使用凝聚层次聚类法对来自两个不同标本的人类内耳中的四个 SGC 群体进行了鉴定,这与目前 SGC 分为两组的区分方法相反。此外,我们还发现了胞体及其相应核在耳蜗螺旋上沿空间排列的证据。在这种排列中,中间转的细胞体大小最均匀,代表了大多数发音频率。由于来自其他哺乳动物的单细胞记录可能不能代表人类,并且人类 SGC 无法进行生理测量,因此已经使用计算机模拟来量化胞体大小变化对电微刺激单个神经元反应的影响。结果表明,放电模式的时间参数受到细胞体大小的影响。阴极刺激被发现会引起更强的尖峰变化,同时也导致最低的阈值和最长的潜伏期。因此,阳极刺激会导致具有不同胞体大小的 SGC 之间产生更均匀的兴奋分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f6c/3377987/4af511389c8c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验