Suppr超能文献

耳蜗植入电极-神经元界面建模:神经存活、电极放置和部分三角配置的影响。

Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration.

机构信息

Department of Applied Mathematics, University of Washington, Seattle, WA, USA.

出版信息

Hear Res. 2010 Sep 1;268(1-2):93-104. doi: 10.1016/j.heares.2010.05.005. Epub 2010 May 24.

Abstract

The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions.

摘要

部分三极电极配置是一种相对较新的刺激策略,与常用的单极配置相比,它可以产生更集中的电场。聚焦刺激策略应该可以提高人工耳蜗使用者的频谱分辨率,但也可能对电极-神经元界面的局部不规则性更敏感。在这项研究中,我们开发了一种耳蜗植入刺激的实用计算机模型,可以在简化的耳蜗几何形状中模拟神经激活,我们将得到的神经活动模式与基本的心理物理测量联系起来。我们研究了电极-神经元界面的两种局部不规则性(螺旋神经节神经密度的变化和 scala tympani 中的电极位置)如何影响模拟的神经激活模式,以及这些模式如何随电极配置而变化。该模型表明,较高的部分三极分数在所有电流水平下激活更集中的神经元群体,并且需要更高的电流水平来激发给定数量的神经元。我们发现,在高部分三极分数下,两种类型的不规则性都对阈值水平更为敏感,但这些影响不是独立的。特别是,在电极-神经元距离较近的情况下,激活通常更集中于空间,这导致神经死区的影响更大。

相似文献

4
Estimating health of the implanted cochlea using psychophysical strength-duration functions and electrode configuration.
Hear Res. 2022 Feb;414:108404. doi: 10.1016/j.heares.2021.108404. Epub 2021 Nov 27.
5
Probing the electrode-neuron interface with focused cochlear implant stimulation.
Trends Amplif. 2010 Jun;14(2):84-95. doi: 10.1177/1084713810375249.
6
Model-Based Inference of Electrode Distance and Neuronal Density from Measured Detection Thresholds in Cochlear Implant Listeners.
J Assoc Res Otolaryngol. 2025 Apr;26(2):185-201. doi: 10.1007/s10162-025-00978-1. Epub 2025 Mar 6.
7
Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses.
Hear Res. 2006 May;215(1-2):10-21. doi: 10.1016/j.heares.2006.02.012. Epub 2006 Apr 18.
8
The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach.
Hear Res. 2006 Apr;214(1-2):17-27. doi: 10.1016/j.heares.2006.01.015. Epub 2006 Mar 7.
10
Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation.
Hear Res. 2012 Jan;283(1-2):45-58. doi: 10.1016/j.heares.2011.11.005. Epub 2011 Nov 22.

引用本文的文献

4
Model-Based Inference of Electrode Distance and Neuronal Density from Measured Detection Thresholds in Cochlear Implant Listeners.
J Assoc Res Otolaryngol. 2025 Apr;26(2):185-201. doi: 10.1007/s10162-025-00978-1. Epub 2025 Mar 6.
5
Investigating the Effect of Blurring and Focusing Current in Cochlear Implant Users with the Panoramic ECAP Method.
J Assoc Res Otolaryngol. 2024 Dec;25(6):591-609. doi: 10.1007/s10162-024-00966-x. Epub 2024 Oct 16.
8
Cochlear-implant simulated spectral degradation attenuates emotional responses to environmental sounds.
Int J Audiol. 2025 May;64(5):518-524. doi: 10.1080/14992027.2024.2385552. Epub 2024 Aug 15.
10
Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants.
Trends Hear. 2024 Jan-Dec;28:23312165241229880. doi: 10.1177/23312165241229880.

本文引用的文献

2
Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.
IEEE Trans Biomed Eng. 2009 May;56(5):1348-59. doi: 10.1109/TBME.2008.2005782.
3
Stochastic population model for electrical stimulation of the auditory nerve.
IEEE Trans Biomed Eng. 2009 Oct;56(10):2493-501. doi: 10.1109/TBME.2009.2016667. Epub 2009 Mar 16.
5
Role of electrode placement as a contributor to variability in cochlear implant outcomes.
Otol Neurotol. 2008 Oct;29(7):920-8. doi: 10.1097/MAO.0b013e318184f492.
7
The clinical application of potentials evoked from the peripheral auditory system.
Hear Res. 2008 Aug;242(1-2):184-97. doi: 10.1016/j.heares.2008.04.005. Epub 2008 Apr 22.
8
Current focusing and steering: modeling, physiology, and psychophysics.
Hear Res. 2008 Aug;242(1-2):141-53. doi: 10.1016/j.heares.2008.03.006. Epub 2008 Apr 6.
9
Forward-masked spatial tuning curves in cochlear implant users.
J Acoust Soc Am. 2008 Mar;123(3):1522-43. doi: 10.1121/1.2836786.
10
Psychophysical assessment of stimulation sites in auditory prosthesis electrode arrays.
Hear Res. 2008 Aug;242(1-2):172-83. doi: 10.1016/j.heares.2007.11.007. Epub 2007 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验