Suppr超能文献

一种用于神经假体系统开发的上肢肌肉骨骼模型。

A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems.

作者信息

Blana Dimitra, Hincapie Juan G, Chadwick Edward K, Kirsch Robert F

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Wickenden Building 119, 10900 Euclid Ave, Cleveland OH 44116, USA.

出版信息

J Biomech. 2008;41(8):1714-21. doi: 10.1016/j.jbiomech.2008.03.001. Epub 2008 Apr 16.

Abstract

Upper extremity neuroprostheses use functional electrical stimulation (FES) to restore arm motor function to individuals with cervical level spinal cord injury. For the design and testing of these systems, a biomechanical model of the shoulder and elbow has been developed, to be used as a substitute for the human arm. It can be used to design and evaluate specific implementations of FES systems, as well as FES controllers. The model can be customized to simulate a variety of pathological conditions. For example, by adjusting the maximum force the muscles can produce, the model can be used to simulate an individual with tetraplegia and to explore the effects of FES of different muscle sets. The model comprises six bones, five joints, nine degrees of freedom, and 29 shoulder and arm muscles. It was developed using commercial, graphics-based modeling and simulation packages that are easily accessible to other researchers and can be readily interfaced to other analysis packages. It can be used for both forward-dynamic (inputs: muscle activation and external load; outputs: motions) and inverse-dynamic (inputs: motions and external load; outputs: muscle activation) simulations. Our model was verified by comparing the model calculated muscle activations to electromyographic signals recorded from shoulder and arm muscles of five subjects. As an example of its application to neuroprosthesis design, the model was used to demonstrate the importance of rotator cuff muscle stimulation when aiming to restore humeral elevation. It is concluded that this model is a useful tool in the development and implementation of upper extremity neuroprosthetic systems.

摘要

上肢神经假体利用功能性电刺激(FES)来恢复颈段脊髓损伤患者的手臂运动功能。为了设计和测试这些系统,已经开发了一种肩部和肘部的生物力学模型,用作人体手臂的替代品。它可用于设计和评估FES系统以及FES控制器的具体实施方案。该模型可以定制以模拟各种病理状况。例如,通过调整肌肉可产生的最大力量,该模型可用于模拟四肢瘫痪患者,并探索不同肌肉群的FES效果。该模型包括六块骨骼、五个关节、九个自由度以及29块肩部和手臂肌肉。它是使用基于图形的商业建模和仿真软件包开发的,其他研究人员很容易获得这些软件包,并且可以很方便地与其他分析软件包接口。它可用于正向动力学(输入:肌肉激活和外部负载;输出:运动)和逆向动力学(输入:运动和外部负载;输出:肌肉激活)模拟。通过将模型计算出的肌肉激活与从五名受试者的肩部和手臂肌肉记录的肌电信号进行比较,验证了我们的模型。作为其在神经假体设计中应用的一个例子,该模型被用于证明在旨在恢复肱骨抬高时刺激肩袖肌肉的重要性。得出的结论是,该模型是上肢神经假体系统开发和实施中的一个有用工具。

相似文献

1
A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems.
J Biomech. 2008;41(8):1714-21. doi: 10.1016/j.jbiomech.2008.03.001. Epub 2008 Apr 16.
2
Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):80-90. doi: 10.1109/TNSRE.2008.2010480.
4
EMG-based control for a C5/C6 spinal cord injury upper extremity neuroprosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:2432-5. doi: 10.1109/IEMBS.2007.4352819.
5
A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements.
IEEE Trans Biomed Eng. 2009 Apr;56(4):941-8. doi: 10.1109/TBME.2008.2005946. Epub 2008 Sep 26.
6
Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion.
J Biomech. 1996 Jan;29(1):39-52. doi: 10.1016/0021-9290(95)00026-7.
7
Computer simulation on the cueing movements in cue sports: a validation study.
PeerJ. 2023 Oct 11;11:e16180. doi: 10.7717/peerj.16180. eCollection 2023.
8
Musculoskeletal model-guided, customizable selection of shoulder and elbow muscles for a C5 SCI neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2008 Jun;16(3):255-63. doi: 10.1109/TNSRE.2008.922681.
9
Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
J Neurophysiol. 1999 Apr;81(4):1458-68. doi: 10.1152/jn.1999.81.4.1458.
10
Avoiding high-risk rotator cuff loading: Muscle force during three pull-up techniques.
Scand J Med Sci Sports. 2020 Nov;30(11):2205-2214. doi: 10.1111/sms.13780. Epub 2020 Aug 7.

引用本文的文献

2
Effects of poling camber angle on the biomechanics of cross-country sit-skiing.
Sci Rep. 2023 Nov 28;13(1):20893. doi: 10.1038/s41598-023-48359-z.
3
Musculoskeletal simulation of professional ski jumpers during take-off considering aerodynamic forces.
Front Bioeng Biotechnol. 2023 Aug 31;11:1241135. doi: 10.3389/fbioe.2023.1241135. eCollection 2023.
4
A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease.
Med Biol Eng Comput. 2023 Sep;61(9):2241-2254. doi: 10.1007/s11517-023-02823-0. Epub 2023 Mar 27.
6
Musculoskeletal Modeling and Inverse Dynamic Analysis of Precision Grip in the Japanese Macaque.
Front Syst Neurosci. 2021 Dec 8;15:774596. doi: 10.3389/fnsys.2021.774596. eCollection 2021.
7
A Matlab toolbox for scaled-generic modeling of shoulder and elbow.
Sci Rep. 2021 Oct 21;11(1):20806. doi: 10.1038/s41598-021-99856-y.
8
A segmented forearm model of hand pronation-supination approximates joint moments for real time applications.
Int IEEE EMBS Conf Neural Eng. 2021 May;2021:751-754. doi: 10.1109/ner49283.2021.9441405. Epub 2021 Jun 2.
9
Muscle function in glenohumeral joint stability during lifting task.
PLoS One. 2017 Dec 15;12(12):e0189406. doi: 10.1371/journal.pone.0189406. eCollection 2017.

本文引用的文献

1
Surface and wire EMG crosstalk in neighbouring muscles.
J Electromyogr Kinesiol. 1994;4(3):131-42. doi: 10.1016/1050-6411(94)90014-0.
2
The relationship between two different mechanical cost functions and muscle oxygen consumption.
J Biomech. 2006;39(4):758-65. doi: 10.1016/j.jbiomech.2004.11.034.
3
Muscle oxygen consumption, determined by NIRS, in relation to external force and EMG.
J Biomech. 2003 Jul;36(7):905-12. doi: 10.1016/s0021-9290(03)00081-2.
5
A three-dimensional regression model of the shoulder rhythm.
Clin Biomech (Bristol). 2001 Nov;16(9):735-43. doi: 10.1016/s0268-0033(01)00065-1.
6
Measuring muscle and joint geometry parameters of a shoulder for modeling purposes.
J Biomech. 1999 Nov;32(11):1191-7. doi: 10.1016/s0021-9290(99)00122-0.
7
Inverse optimization: functional and physiological considerations related to the force-sharing problem.
Crit Rev Biomed Eng. 1997;25(4-5):371-407. doi: 10.1615/critrevbiomedeng.v25.i4-5.20.
8
Parameters for modeling the upper extremity.
J Biomech. 1997 Jun;30(6):647-52. doi: 10.1016/s0021-9290(97)00011-0.
9
A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography.
Electroencephalogr Clin Neurophysiol. 1996 Dec;101(6):511-9. doi: 10.1016/s0013-4694(96)95190-5.
10
A finite element musculoskeletal model of the shoulder mechanism.
J Biomech. 1994 May;27(5):551-69. doi: 10.1016/0021-9290(94)90065-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验