Keyser Ulrich F
Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Methods Mol Biol. 2012;870:115-34. doi: 10.1007/978-1-61779-773-6_7.
The translocation of long-chain molecules, such as DNA or peptides, through membranes is an integral process for the function of living cells. During the translocation process, a number of interactions of electrostatic or hydrophobic nature govern the translocation velocity. Most of these interactions remain largely unexplored on the single-molecule level due to a lack of suitable instrumentation. We have shown that a combination of optical tweezers, single solid-state nanopores, and electrophysiological ionic current detection can provide further insight into the behavior of polymers in confinement. Here, we describe the experimental procedures necessary for manipulation of single biopolymers in a single nanopore not only by electrical fields, but also through mechanical forces using optical tweezers.
长链分子(如DNA或肽)通过膜的转运是活细胞功能的一个不可或缺的过程。在转运过程中,许多静电或疏水性质的相互作用决定了转运速度。由于缺乏合适的仪器,这些相互作用中的大多数在单分子水平上仍未得到充分探索。我们已经表明,光镊、单个固态纳米孔和电生理离子电流检测的组合可以进一步深入了解聚合物在受限环境中的行为。在这里,我们描述了不仅通过电场,而且通过使用光镊的机械力在单个纳米孔中操纵单个生物聚合物所需的实验程序。