Scientific Visualization Unit, Institute of Clinical Physiology, CNR of Italy, Area della Ricerca, Pisa, 56124, Italy.
BMC Bioinformatics. 2012 Mar 28;13 Suppl 4(Suppl 4):S16. doi: 10.1186/1471-2105-13-S4-S16.
In living cells, proteins are in continuous motion and interaction with the surrounding medium and/or other proteins and ligands. These interactions are mediated by protein features such as electrostatic and lipophilic potentials. The availability of protein structures enables the study of their surfaces and surface characteristics, based on atomic contribution. Traditionally, these properties are calculated by physico-chemical programs and visualized as range of colors that vary according to the tool used and imposes the necessity of a legend to decrypt it. The use of color to encode both characteristics makes the simultaneous visualization almost impossible, requiring these features to be visualized in different images. In this work, we describe a novel and intuitive code for the simultaneous visualization of these properties.
Recent advances in 3D animation and rendering software have not yet been exploited for the representation of biomolecules in an intuitive, animated form. For our purpose we use Blender, an open-source, free, cross-platform application used professionally for 3D work. On the basis Blender, we developed BioBlender, dedicated to biological work: elaboration of protein motion with simultaneous visualization of their chemical and physical features. Electrostatic and lipophilic potentials are calculated using physico-chemical software and scripts, organized and accessed through BioBlender interface.
A new visual code is introduced for molecular lipophilic potential: a range of optical features going from smooth-shiny for hydrophobic regions to rough-dull for hydrophilic ones. Electrostatic potential is represented as animated line particles that flow along field lines, proportional to the total charge of the protein.
Our system permits visualization of molecular features and, in the case of moving proteins, their continuous perception, calculated for each conformation during motion. Using real world tactile/sight feelings, the nanoscale world of proteins becomes more understandable, familiar to our everyday life, making it easier to introduce "un-seen" phenomena (concepts) such as hydropathy or charges. Moreover, this representation contributes to gain insight into molecular functions by drawing viewer's attention to the most active regions of the protein. The program, available for Windows, Linux and MacOS, can be downloaded freely from the dedicated website http://www.bioblender.eu.
在活细胞中,蛋白质与周围介质和/或其他蛋白质和配体不断地发生相互作用。这些相互作用是由蛋白质的特征介导的,如静电和疏水性潜力。蛋白质结构的可用性使我们能够基于原子贡献来研究它们的表面和表面特征。传统上,这些性质是通过物理化学程序计算的,并以根据所使用的工具而变化的颜色范围可视化,这就需要使用图例来解密。使用颜色来编码这些特性使得同时可视化几乎不可能,需要将这些特性在不同的图像中进行可视化。在这项工作中,我们描述了一种新颖而直观的代码,用于同时可视化这些特性。
3D 动画和渲染软件的最新进展尚未被用于以直观、动画的形式表示生物分子。为了达到我们的目的,我们使用了 Blender,这是一款开源的、免费的、跨平台的应用程序,专业用于 3D 工作。在此基础上,我们开发了 BioBlender,专门用于生物学工作:通过同时可视化蛋白质的化学和物理特性来进行蛋白质运动的模拟。静电和疏水性潜力是使用物理化学软件和脚本计算的,这些脚本组织在 BioBlender 界面中,并通过该界面进行访问。
我们引入了一种新的分子疏水性潜力的视觉代码:从疏水性区域的光滑闪亮到亲水性区域的粗糙暗淡的一系列光学特征。静电势表示为沿电场线流动的动画线状粒子,与蛋白质的总电荷成正比。
我们的系统允许对分子特征进行可视化,并且在蛋白质运动的情况下,允许对每个构象进行连续感知。使用真实世界的触觉/视觉感受,蛋白质的纳米世界变得更加容易理解,与我们的日常生活更加相似,使得引入“看不见”的现象(概念),如疏水性或电荷变得更加容易。此外,这种表示方法有助于通过将观察者的注意力吸引到蛋白质的最活跃区域来深入了解分子功能。该程序适用于 Windows、Linux 和 MacOS,可以从专用网站 http://www.bioblender.eu 免费下载。