Laboratory of Organic Chemistry, Dreijenplein 8, Wageningen University, 6703 HB Wageningen, The Netherlands.
Part Fibre Toxicol. 2012 Apr 30;9:11. doi: 10.1186/1743-8977-9-11.
Polymer nanoparticles (PNP) are becoming increasingly important in nanomedicine and food-based applications. Size and surface characteristics are often considered to be important factors in the cellular interactions of these PNP, although systematic investigations on the role of surface properties on cellular interactions and toxicity of PNP are scarce.
Fluorescent, monodisperse tri-block copolymer nanoparticles with different sizes (45 and 90 nm) and surface charges (positive and negative) were synthesized, characterized and studied for uptake and cytotoxicity in NR8383 and Caco-2 cells. All types of PNP were taken up by the cells. The positive smaller PNP45 (45 nm) showed a higher cytotoxicity compared to the positive bigger PNP(90) (90 nm) particles including reduction in mitochondrial membrane potential (ΔΨ(m)), induction of reactive oxygen species (ROS) production, ATP depletion and TNF-α release. The negative PNP did not show any cytotoxic effect. Reduction in mitochondrial membrane potential (ΔΨ(m)), uncoupling of the electron transfer chain in mitochondria and the resulting ATP depletion, induction of ROS and oxidative stress may all play a role in the possible mode of action for the cytotoxicity of these PNP. The role of receptor-mediated endocytosis in the intracellular uptake of different PNP was studied by confocal laser scanning microscopy (CLSM). Involvement of size and charge in the cellular uptake of PNP by clathrin (for positive PNP), caveolin (for negative PNP) and mannose receptors (for hydroxylated PNP) were found with smaller PNP45 showing stronger interactions with the receptors than bigger PNP(90).
The size and surface characteristics of polymer nanoparticles (PNP; 45 and 90 nm with different surface charges) play a crucial role in cellular uptake. Specific interactions with cell membrane-bound receptors (clathrin, caveolin and mannose) leading to cellular internalization were observed to depend on size and surface properties of the different PNP. These properties of the nanoparticles also dominate their cytotoxicity, which was analyzed for many factors. The effective reduction in the mitochondrial membrane potential (ΔΨ(m)), uncoupling of the electron transfer chain in mitochondria and resulting ATP depletion, induction of ROS and oxidative stress likely all play a role in the mechanisms behind the cytotoxicity of these PNP.
聚合物纳米粒子(PNP)在纳米医学和基于食品的应用中变得越来越重要。尺寸和表面特性通常被认为是这些 PNP 细胞相互作用的重要因素,尽管关于表面特性对 PNP 细胞相互作用和毒性的系统研究还很少。
合成、表征了具有不同尺寸(45nm 和 90nm)和表面电荷(正电荷和负电荷)的荧光单分散三嵌段共聚物纳米粒子,并研究了它们在 NR8383 和 Caco-2 细胞中的摄取和细胞毒性。所有类型的 PNP 都被细胞摄取。与正电荷较大的 PNP(90)(90nm)颗粒相比,正电荷较小的 PNP45(45nm)显示出更高的细胞毒性,包括线粒体膜电位(ΔΨ(m))降低、活性氧(ROS)产生诱导、ATP 耗竭和 TNF-α释放。负 PNP 没有显示出任何细胞毒性作用。线粒体膜电位(ΔΨ(m))降低、线粒体电子传递链解偶联和由此导致的 ATP 耗竭、ROS 和氧化应激的诱导可能都在这些 PNP 细胞毒性的可能作用模式中发挥作用。通过共聚焦激光扫描显微镜(CLSM)研究了受体介导的内吞作用在不同 PNP 细胞内摄取中的作用。发现尺寸和电荷在 PNP 被网格蛋白(正 PNP)、小窝蛋白(负 PNP)和甘露糖受体(羟基化 PNP)摄取中的作用,较小的 PNP45 与受体的相互作用强于较大的 PNP(90)。
聚合物纳米粒子(PNP;45nm 和 90nm 具有不同的表面电荷)的尺寸和表面特性在细胞摄取中起着至关重要的作用。观察到与细胞膜结合受体(网格蛋白、小窝蛋白和甘露糖受体)的特异性相互作用导致细胞内化,这取决于不同 PNP 的尺寸和表面特性。这些纳米粒子的特性也主导着它们的细胞毒性,我们分析了许多因素。有效降低线粒体膜电位(ΔΨ(m))、线粒体电子传递链解偶联和由此导致的 ATP 耗竭、ROS 和氧化应激的诱导可能都在这些 PNP 细胞毒性的机制中发挥作用。