Suppr超能文献

通过比较蛋白质组学探索后生动物热耐受极限:两种深海热液喷口多毛类动物受热诱导的蛋白丰度变化。

Exploring the limit of metazoan thermal tolerance via comparative proteomics: thermally induced changes in protein abundance by two hydrothermal vent polychaetes.

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.

出版信息

Proc Biol Sci. 2012 Aug 22;279(1741):3347-56. doi: 10.1098/rspb.2012.0098. Epub 2012 May 2.

Abstract

Temperatures around hydrothermal vents are highly variable, ranging from near freezing up to 300°C. Nevertheless, animals thrive around vents, some of which live near the known limits of animal thermotolerance. Paralvinella sulfincola, an extremely thermotolerant vent polychaete, and Paralvinella palmiformis, a cooler-adapted congener, are found along the Juan de Fuca Ridge in the northwestern Pacific. We conducted shipboard high-pressure thermotolerance experiments on both species to characterize the physiological adaptations underlying P. sulfincola's pronounced thermotolerance. Quantitative proteomics, expressed sequence tag (EST) libraries and glutathione assays revealed that P. sulfincola (i) exhibited an upregulation in the synthesis and recycling of glutathione with increasing temperature, (ii) downregulated nicotinamide adenine dinucleotide (NADH) and succinate dehydrogenases (key enzymes in oxidative phosphorylation) with increasing temperature, and (iii) maintained elevated levels of heat shock proteins (HSPs) across all treatments. In contrast, P. palmiformis exhibited more typical responses to increasing temperatures (e.g. increasing HSPs at higher temperatures). These data reveal differences in how a mesotolerant and extremely thermotolerant eukaryote respond to thermal stress, and suggest that P. sulfincola's capacity to mitigate oxidative stress via increased synthesis of antioxidants and decreased flux through the mitochondrial electron transport chain enable pronounced thermotolerance. Ultimately, oxidative stress may be the key factor in limiting all metazoan thermotolerance.

摘要

热液喷口周围的温度变化很大,范围从接近冰点到 300°C。然而,动物在喷口周围茁壮成长,其中一些生活在动物耐热性的已知极限附近。 Paralvinella sulfincola 是一种极其耐热的喷口多毛类动物,Paralvinella palmiformis 是一种适应较冷环境的近亲,它们分布在西北太平洋的胡安·德富卡海脊上。我们对这两个物种进行了船上高压耐热性实验,以研究 P. sulfincola 明显耐热性的生理适应机制。定量蛋白质组学、表达序列标签(EST)文库和谷胱甘肽测定表明,P. sulfincola (i)随着温度的升高,合成和回收谷胱甘肽的能力增强;(ii)随着温度的升高,烟酰胺腺嘌呤二核苷酸(NADH)和琥珀酸脱氢酶(氧化磷酸化的关键酶)的表达下调;(iii)在所有处理中,热休克蛋白(HSPs)的水平保持升高。相比之下,P. palmiformis 对温度升高的反应更为典型(例如,在较高温度下 HSPs 水平升高)。这些数据揭示了一种中等耐热和极度耐热真核生物对热应激的不同反应方式,并表明 P. sulfincola 通过增加抗氧化剂的合成和减少线粒体电子传递链的通量来减轻氧化应激的能力,使其具有显著的耐热性。最终,氧化应激可能是限制所有后生动物耐热性的关键因素。

相似文献

2
Thermal preference and tolerance of alvinellids.
Science. 2006 Apr 14;312(5771):231. doi: 10.1126/science.1125286.
5
Thermal limit for metazoan life in question: in vivo heat tolerance of the Pompeii worm.
PLoS One. 2013 May 29;8(5):e64074. doi: 10.1371/journal.pone.0064074. Print 2013.
7
Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm.
PLoS One. 2012;7(2):e31150. doi: 10.1371/journal.pone.0031150. Epub 2012 Feb 10.
8
Highly sensitive avoidance plays a key role in sensory adaptation to deep-sea hydrothermal vent environments.
PLoS One. 2018 Jan 3;13(1):e0189902. doi: 10.1371/journal.pone.0189902. eCollection 2018.

引用本文的文献

2
Heat tolerance, oxidative stress response tuning and robust gene activation in early-stage embryos.
Proc Biol Sci. 2024 Aug;291(2029):20240973. doi: 10.1098/rspb.2024.0973. Epub 2024 Aug 21.
4
Complete mitochondrial genome of (Polychaeta: Alvinellidae).
Mitochondrial DNA B Resour. 2022 May 9;7(5):786-788. doi: 10.1080/23802359.2022.2071652. eCollection 2022.
6
Inhibition of HSF1 and SAFB Granule Formation Enhances Apoptosis Induced by Heat Stress.
Int J Mol Sci. 2021 May 7;22(9):4982. doi: 10.3390/ijms22094982.
7
Small heat shock proteins: multifaceted proteins with important implications for life.
Cell Stress Chaperones. 2019 Mar;24(2):295-308. doi: 10.1007/s12192-019-00979-z. Epub 2019 Feb 13.
9
Highly sensitive avoidance plays a key role in sensory adaptation to deep-sea hydrothermal vent environments.
PLoS One. 2018 Jan 3;13(1):e0189902. doi: 10.1371/journal.pone.0189902. eCollection 2018.
10
Maternal loading of a small heat shock protein increases embryo thermal tolerance in .
J Exp Biol. 2017 Dec 1;220(Pt 23):4492-4501. doi: 10.1242/jeb.164848. Epub 2017 Nov 2.

本文引用的文献

1
Comparative physiology: a "crystal ball" for predicting consequences of global change.
Am J Physiol Regul Integr Comp Physiol. 2011 Jul;301(1):R1-14. doi: 10.1152/ajpregu.00719.2010. Epub 2011 Mar 23.
3
A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions.
Plant Physiol. 2010 Sep;154(1):311-23. doi: 10.1104/pp.110.158535. Epub 2010 Jul 6.
4
Response of Alvinella pompejana to variable oxygen stress: a proteomic approach.
Proteomics. 2010 Jun;10(12):2250-8. doi: 10.1002/pmic.200900394.
5
GRP94 in ER quality control and stress responses.
Semin Cell Dev Biol. 2010 Jul;21(5):479-85. doi: 10.1016/j.semcdb.2010.03.004. Epub 2010 Mar 16.
6
A proteomic analysis of the aphid Macrosiphum euphorbiae under heat and radiation stress.
Insect Biochem Mol Biol. 2009 Jan;39(1):20-30. doi: 10.1016/j.ibmb.2008.09.014. Epub 2008 Nov 1.
7
Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation.
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10949-54. doi: 10.1073/pnas.0712334105. Epub 2008 Jul 29.
8
Thermal biology of the deep-sea vent annelid Paralvinella grasslei: in vivo studies.
J Exp Biol. 2008 Jul;211(Pt 14):2196-204. doi: 10.1242/jeb.018606.
9
Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families.
Biochemistry. 2008 Jul 8;47(27):7001-11. doi: 10.1021/bi800639z. Epub 2008 Jun 17.
10
The Hsp90 chaperone machinery.
J Biol Chem. 2008 Jul 4;283(27):18473-7. doi: 10.1074/jbc.R800007200. Epub 2008 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验