Suppr超能文献

细菌系统中代谢组的分类

Categorization of metabolome in bacterial systems.

作者信息

Kolhi Shweta, Kolaskar A S

出版信息

Bioinformation. 2012;8(7):309-15. doi: 10.6026/97320630008309. Epub 2012 Apr 13.

Abstract

Analyses of biological databases such as those of genome, proteome, metabolome etc., have given insights in organization of biological systems. However, current efforts do not utilize the complete potential of available metabolome data. In this study, metabolome of bacterial systems with reliable annotations are analyzed and a simple method is developed to categorize pathways hierarchically, using rational approach. Ninety-four bacterial systems having for each ≥ 250 annotated metabolic pathways were used to identify a set of common pathways. 42 pathways were present in all bacteria which are termed as Core/Stage I pathways. This set of pathways was used along with interacting compounds to categorize pathways in the metabolome hierarchically. In each metabolome non-interacting pathways were identified including at each stage. The case study of Escherichia coli O157, having 433 annotated pathways, shows that 378 pathways interact directly or indirectly with 41 core pathways while 14 pathways are noninteracting. These 378 pathways are distributed in Stage II (289), Stage III (75), Stage IV (13) and Stage V (1) category. The approach discussed here allows understanding of the complexity of metabolic networks. It has pointed out that core pathways could be most ancient pathways and compounds that interact with maximum pathways may be compounds with high biosynthetic potential, which can be easily identified. Further, it was shown that interactions of pathways at various stages could be one to one, one to many, many to one or many to many mappings through interacting compounds. The granularity of the method discussed being high; the impact of perturbation in a pathway on the metabolome and particularly sub networks can be studied precisely. The categorizations of metabolic pathways help in identifying choke point enzymes that are useful to identify probable drug targets. The Metabolic categorizations for 94 bacteria are available at http://115.111.37.202/mpe/.

摘要

对诸如基因组、蛋白质组、代谢组等生物数据库的分析,为理解生物系统的组织提供了线索。然而,目前的研究尚未充分利用现有代谢组数据的全部潜力。在本研究中,我们分析了具有可靠注释的细菌系统的代谢组,并开发了一种简单的方法,采用合理的方法对代谢途径进行层次分类。我们使用了94个细菌系统,每个系统至少有250条注释的代谢途径,以确定一组共同的途径。所有细菌中共有42条途径,被称为核心/第一阶段途径。这组途径与相互作用的化合物一起用于对代谢组中的途径进行层次分类。在每个代谢组中,包括在每个阶段都鉴定出了非相互作用途径。以具有433条注释途径的大肠杆菌O157为例,结果表明,378条途径与41条核心途径直接或间接相互作用,而14条途径不相互作用。这378条途径分布在第二阶段(289条)、第三阶段(75条)、第四阶段(13条)和第五阶段(1条)类别中。这里讨论的方法有助于理解代谢网络的复杂性。研究指出,核心途径可能是最古老的途径,与最多途径相互作用的化合物可能是具有高生物合成潜力的化合物,这些化合物很容易被识别。此外,研究表明,通过相互作用的化合物,不同阶段途径之间的相互作用可以是一对一、一对多、多对一或多对多的映射。所讨论方法的粒度很高,可以精确研究途径中的扰动对代谢组尤其是子网络的影响。代谢途径的分类有助于识别关键酶,这些酶对于确定可能的药物靶点很有用。94种细菌的代谢分类可在http://115.111.37.202/mpe/获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2593/3338974/fd7b4a64ab0b/97320630008309F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验