Suppr超能文献

未感染的脊椎动物细胞中的DNA和RNA含有与禽骨髓细胞瘤病毒推定转化基因相关的核苷酸序列。

DNA and RNA from uninfected vertebrate cells contain nucleotide sequences related to the putative transforming gene of avian myelocytomatosis virus.

作者信息

Sheiness D, Bishop J M

出版信息

J Virol. 1979 Aug;31(2):514-21. doi: 10.1128/JVI.31.2.514-521.1979.

Abstract

The avian carcinoma virus MC29 (MC29V) contains a sequence of approximately 1,500 nucleotides which may represent a gene responsible for tumorigenesis by MC29V. We present evidence that MC29V has acquired this nucleotide sequence from the DNA of its host. The host sequence which has been incorporated by MC29V is transcribed into RNA in uninfected chicken cells and thus probably encodes a cellular gene. We have prepared radioactive DNA complementary to the putative MC29V transforming gene (cDNA(mc) (29)) and have found that sequences homologous to cDNA(mc) (29) are present in the genomes of several uninfected vertebrate species. The DNA of chicken, the natural host for MC29V, contains at least 90% of the sequences represented by cDNA(mc) (29). DNAs from other animals show significant but decreasing amounts of complementarity to cDNA(mc) (29) in accordance with their evolutionary divergence from chickens; the thermal stabilities of duplexes formed between cDNA(mc) (29) and avian DNAs also reflect phylogenetic divergence. Sequences complementary to cDNA(mc) (29) are transcribed into approximately 10 copies per cell of polyadenylated RNA in uninfected chicken fibroblasts. Thus, the vertebrate homolog of cDNA(mc) (29) may be a gene which has been conserved throughout vertebrate evolution and which served as a progenitor for the putative transforming gene of MC29V. Recent experiments suggest that the putative transforming gene of avian erythroblastosis virus, like that of MC29V, may have arisen by incorporation of a host gene (Stehelin et al., personal communication). These findings for avian erythroblastosis virus and MC29V closely parallel previous results, suggesting a host origin for src (D. H. Spector, B. Baker, H. E. Varmus, and J. M. Bishop, Cell 13:381-386, 1978; D. H. Spector, K. Smith, T. Padgett, P. McCombe, D. Roulland-Dussoix, C. Moscovici, H. E. Varmus, and J. M. Bishop, Cell 13:371-379, 1978; D. H. Spector, H. E. Varmus, and J. M. Bishop, Proc. Natl. Acad. Sci. U.S.A. 75:4102-4106, 1978; D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, Nature [London] 260:170-173, 1976), the gene responsible for tumorigenesis by avian sarcoma virus. Avian sarcoma virus, avian erythroblastosis virus, and MC29V, however, induce distinctly different spectra of tumors within their host. The putative transforming genes of these viruses share no detectable homology, although sequences homologous to all three types of putative transforming genes occur and are highly conserved in the genomes of several vertebrate species. These data suggest that evolution of oncogenic retroviruses has frequently involved a mechanism whereby incorporation and perhaps modification of different host genes provides each virus with the ability to induce its characteristic tumors.

摘要

禽癌病毒MC29(MC29V)含有一段约1500个核苷酸的序列,该序列可能代表一个负责MC29V致瘤作用的基因。我们提供的证据表明,MC29V从其宿主的DNA中获得了这段核苷酸序列。被MC29V整合的宿主序列在未感染的鸡细胞中转录成RNA,因此可能编码一个细胞基因。我们制备了与推定的MC29V转化基因互补的放射性DNA(cDNA(mc)(29)),并发现几个未感染的脊椎动物物种的基因组中存在与cDNA(mc)(29)同源的序列。MC29V的天然宿主鸡的DNA含有cDNA(mc)(29)所代表序列的至少90%。来自其他动物的DNA与cDNA(mc)(29)的互补性显著,但根据它们与鸡的进化差异而减少;cDNA(mc)(29)与禽类DNA形成的双链体的热稳定性也反映了系统发育差异。在未感染的鸡成纤维细胞中,与cDNA(mc)(29)互补的序列转录成每个细胞约10个拷贝的多聚腺苷酸化RNA。因此,cDNA(mc)(29)的脊椎动物同源物可能是一个在整个脊椎动物进化过程中保守的基因,并且是MC29V推定的转化基因的祖先。最近的实验表明,禽成红细胞增多症病毒的推定转化基因,与MC29V的一样,可能是通过整合一个宿主基因产生的(斯特林等人,个人交流)。禽成红细胞增多症病毒和MC29V的这些发现与先前的结果非常相似,提示src基因(D.H.斯佩克特、B.贝克、H.E.瓦尔默斯和J.M.毕晓普,《细胞》13:381 - 386,1978;D.H.斯佩克特、K.史密斯、T.帕吉特、P.麦科姆、D.鲁兰德 - 迪索伊克斯、C.莫斯科维奇、H.E.瓦尔默斯和J.M.毕晓普,《细胞》13:371 - 379,1978;D.H.斯佩克特、H.E.瓦尔默斯和J.M.毕晓普,《美国国家科学院院刊》75:4102 - 4106,1978;D.斯特林、H.E.瓦尔默斯、J.M.毕晓普和P.K.沃格特,《自然》[伦敦]260:170 - 173,1976)的宿主起源,src基因是禽肉瘤病毒致瘤作用的原因。然而,禽肉瘤病毒、禽成红细胞增多症病毒和MC29V在其宿主内诱导出明显不同的肿瘤谱。这些病毒的推定转化基因没有可检测到的同源性,尽管与所有三种类型的推定转化基因同源的序列存在于几个脊椎动物物种的基因组中并且高度保守。这些数据表明,致癌逆转录病毒的进化经常涉及一种机制,即不同宿主基因的整合以及可能的修饰为每种病毒提供了诱导其特征性肿瘤的能力。

相似文献

2
env Gene of chicken RNA tumor viruses: extent of conservation in cellular and viral genomes.
J Virol. 1978 Sep;27(3):465-74. doi: 10.1128/JVI.27.3.465-474.1978.
7
Unifected avian cells contain structurally unrelated progenitors of viral sarcoma genes.
Nature. 1980 Oct 16;287(5783):653-4. doi: 10.1038/287653a0.
8
Characterization of the oncogene (erb) of avian erythroblastosis virus and its cellular progenitor.
J Virol. 1981 May;38(2):409-19. doi: 10.1128/JVI.38.2.409-419.1981.

引用本文的文献

1
MYC in cancer: from undruggable target to clinical trials.
Nat Rev Drug Discov. 2025 Feb 19. doi: 10.1038/s41573-025-01143-2.
3
The Functional Interaction Between Epstein-Barr Virus and MYC in the Pathogenesis of Burkitt Lymphoma.
Cancers (Basel). 2024 Dec 18;16(24):4212. doi: 10.3390/cancers16244212.
4
Role of c-Myc in lung cancer: Progress, challenges, and prospects.
Chin Med J Pulm Crit Care Med. 2023 Sep;1(3):129-138. doi: 10.1016/j.pccm.2023.07.001. Epub 2023 Sep 11.
5
Identification of a novel MYC target gene set signature for predicting the prognosis of osteosarcoma patients.
Front Oncol. 2023 Jun 5;13:1169430. doi: 10.3389/fonc.2023.1169430. eCollection 2023.
6
Spotlight on New Therapeutic Opportunities for MYC-Driven Cancers.
Onco Targets Ther. 2023 Jun 7;16:371-383. doi: 10.2147/OTT.S366627. eCollection 2023.
7
When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases.
Int J Mol Sci. 2023 Mar 1;24(5):4746. doi: 10.3390/ijms24054746.
8
The Four Homeostasis Knights: In Balance upon Post-Translational Modifications.
Int J Mol Sci. 2022 Nov 21;23(22):14480. doi: 10.3390/ijms232214480.
9
MYC: a complex problem.
Trends Cell Biol. 2023 Mar;33(3):235-246. doi: 10.1016/j.tcb.2022.07.006. Epub 2022 Aug 10.
10
Regulation of Nucleolar Activity by MYC.
Cells. 2022 Feb 7;11(3):574. doi: 10.3390/cells11030574.

本文引用的文献

2
The genes for silk fibroin in Bombyx mori.
J Mol Biol. 1972 Oct 14;70(3):637-49. doi: 10.1016/0022-2836(72)90563-3.
3
The rate of change of DNA in evolution.
Brookhaven Symp Biol. 1972;23:1-43.
5
Analysis of repeating DNA sequences by reassociation.
Methods Enzymol. 1974;29:363-418. doi: 10.1016/0076-6879(74)29033-5.
6
Reduction in the rate of DNA reassociation by sequence divergence.
J Mol Biol. 1973 Dec 5;81(2):123-35. doi: 10.1016/0022-2836(73)90184-8.
8
Isolation and hybridization kinetics of messenger RNA from Dictyostelium discoideum.
Nat New Biol. 1972 Oct 25;239(95):225-8. doi: 10.1038/newbio239225a0.
9
Reiteration frequency of haemoglobin genes in the duck.
Nat New Biol. 1972 Feb 23;235(60):231-4. doi: 10.1038/newbio235231a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验