Suppr超能文献

解码记忆中的振荡表示和机制。

Decoding oscillatory representations and mechanisms in memory.

机构信息

Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany.

出版信息

Neuropsychologia. 2013 Mar;51(4):772-80. doi: 10.1016/j.neuropsychologia.2012.04.002. Epub 2012 May 4.

Abstract

A fundamental goal in memory research is to understand how information is represented in distributed brain networks and what mechanisms enable its reactivation. It is evident that progress towards this goal will greatly benefit from multivariate pattern classification (MVPC) techniques that can decode representations in brain activity with high temporal resolution. Recently, progress along these lines has been achieved by applying MVPC to neural oscillations recorded with electroencephalography (EEG) and magnetoencephalography (MEG). We highlight two examples of methodological approaches for MVPC of EEG and MEG data that can be used to study memory function. The first example aims at understanding the dynamic neural mechanisms that enable reactivation of memory representations, i.e., memory replay; we discuss how MVPC can help uncover the physiological mechanisms underlying memory replay during working memory maintenance and episodic memory. The second example aims at understanding representational differences between various types of memory, such as perceptual priming and conscious recognition memory. We also highlight the conceptual and methodological differences between these two examples. Finally, we discuss potential future applications for MVPC of EEG/MEG data in studies of memory. We conclude that despite its infancy and existing methodological challenges, MVPC of EEG and MEG data is a powerful tool with which to assess mechanistic models of memory.

摘要

记忆研究的一个基本目标是了解信息如何在分布式大脑网络中表示,以及哪些机制能够使其重新激活。显然,朝着这一目标的进展将极大地受益于多元模式分类(MVPC)技术,该技术可以以高时间分辨率解码大脑活动中的表示。最近,通过将 MVPC 应用于脑电图(EEG)和脑磁图(MEG)记录的神经振荡,已经取得了这些方面的进展。我们强调了两种可用于研究记忆功能的 EEG 和 MEG 数据 MVPC 方法的示例。第一个示例旨在了解能够实现记忆表示重新激活(即记忆回放)的动态神经机制;我们讨论了 MVPC 如何帮助揭示工作记忆维持和情景记忆期间记忆回放的生理机制。第二个示例旨在了解各种类型的记忆(例如知觉启动和有意识的识别记忆)之间的表示差异。我们还强调了这两个示例之间的概念和方法学差异。最后,我们讨论了 EEG/MEG 数据 MVPC 在记忆研究中的潜在未来应用。我们得出的结论是,尽管它还处于起步阶段,并且存在方法学挑战,但 EEG 和 MEG 数据的 MVPC 是评估记忆机制模型的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验